Curvature forms and characteristic classes

Thomas Maienschein

September 11, 2011
Grassmannians

Definition

The **Grassmannian** $G_n(\mathbb{R}^{n+k})$ is the set of n-dimensional subspaces of \mathbb{R}^{n+k}. It is a compact manifold of dimension nk.
Grassmannians

Definition

The Grassmannian $G_n(\mathbb{R}^{n+k})$ is the set of n-dimensional subspaces of \mathbb{R}^{n+k}. It is a compact manifold of dimension nk.

- $G_n(\mathbb{R}^{n+k}) \simeq G_k(\mathbb{R}^{n+k})$ by taking orthogonal complements.
- $G_1(\mathbb{R}^{n+1}) \simeq \mathbb{RP}^n$.
The **Grassmannian** \(G_n(\mathbb{R}^{n+k}) \) is the set of \(n \)-dimensional subspaces of \(\mathbb{R}^{n+k} \). It is a compact manifold of dimension \(nk \).

- \(G_n(\mathbb{R}^{n+k}) \cong G_k(\mathbb{R}^{n+k}) \) by taking orthogonal complements.
- \(G_1(\mathbb{R}^{n+1}) \cong \mathbb{R}P^n \).

The infinite Grassmannian \(G_n(\mathbb{R}^{\infty}) \) is the direct limit of the sequence:

\[
G_n(\mathbb{R}^n) \subset G_n(\mathbb{R}^{n+1}) \subset \cdots \subset G_n(\mathbb{R}^{n+k}) \subset \cdots
\]

(Direct limit: Take \(\bigcup_{k \geq 0} G_n(\mathbb{R}^{n+k}) \) and choose the finest topology such that every inclusion is continuous)
Grassmannians
The tautological bundle

We can form an \(n \)-plane bundle over \(G_n(\mathbb{R}^{n+k}) \):
Take \(X \in G_n(\mathbb{R}^{n+k}) \). The fiber over \(X \) is \(X \) itself.
So the total space consists of pairs \((n\text{-plane in } \mathbb{R}^{n+k}, \text{vector in that plane})\).
Grassmannians

The tautological bundle

We can form an \(n \)-plane bundle over \(G_n(\mathbb{R}^{n+k}) \):
Take \(X \in G_n(\mathbb{R}^{n+k}) \). The fiber over \(X \) is \(X \) itself.
So the total space consists of pairs (\(n \)-plane in \(\mathbb{R}^{n+k} \), vector in that plane).

Definition

The **tautological bundle** over \(G_n(\mathbb{R}^{n+k}) \) is denoted \(\gamma^n(\mathbb{R}^{n+k}) \).

We also have the tautological bundle \(\gamma^n \) over \(G_n(\mathbb{R}^\infty) \).
Grassmannians

The tautological bundle

We can form an n-plane bundle over $G_n(\mathbb{R}^{n+k})$:
Take $X \in G_n(\mathbb{R}^{n+k})$. The fiber over X is X itself.
So the total space consists of pairs (n-plane in \mathbb{R}^{n+k}, vector in that plane).

Definition

The **tautological bundle** over $G_n(\mathbb{R}^{n+k})$ is denoted $\gamma^n(\mathbb{R}^{n+k})$.

We also have the tautological bundle γ^n over $G_n(\mathbb{R}^\infty)$.

- $G_1(\mathbb{R}^2) \cong S^1$, and the tautological bundle “is” the Möbius strip.
Grassmannians
Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k}.

Theorem

For any n-plane bundle ξ over M, $\xi = g^*(\gamma_n)$ for some $g : M \to G_n(\mathbb{R}^\infty)$.

Bundles over M are isomorphic iff their classifying maps are homotopic.

Note: M must be paracompact (open covers admit locally finite refinements). This includes manifolds, metric spaces, CW complexes...
Grassmannians
Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k}.

Note that $TM = g^*(\gamma^n(\mathbb{R}^{n+k}))$.
Grassmannians
Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \rightarrow G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k}.

Note that $TM = g^*(\gamma^n(\mathbb{R}^{n+k}))$.
In fact, this works for any n-plane bundle over M, for large enough k:

Theorem

For any n-plane bundle ξ over M, $\xi = g^(\gamma^n)$ for some $g : M \rightarrow G_n(\mathbb{R}^\infty)$.*

Bundles over M are isomorphic iff their classifying maps are homotopic.
Grassmannians
Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k}.

Note that $TM = g^*(\gamma^n(\mathbb{R}^{n+k}))$.

In fact, this works for any n-plane bundle over M, for large enough k:

Theorem

For any n-plane bundle ξ over M, $\xi = g^(\gamma^n)$ for some $g : M \to G_n(\mathbb{R}^\infty)$.***

Bundles over M are isomorphic iff their classifying maps are homotopic. Note: M must be paracompact (open covers admit locally finite refinements). This includes manifolds, metric spaces, CW complexes...
Classifying Spaces
The structure group

Definition

- A **G-atlas** is a local trivialization of a bundle with transition functions $U \cap V \rightarrow G$.
- A **G-bundle** is a vector bundle with a G-atlas.
- G is called the **structure group**.
Classifying Spaces

The structure group

Definition

- A **G-atlas** is a local trivialization of a bundle with transition functions $U \cap V \rightarrow G$.
- A **G-bundle** is a vector bundle with a G-atlas.
- G is called the **structure group**.

Let M be n-dimensional.

- TM is a $GL(n, \mathbb{R})$-bundle.
- If M has a metric, TM is an $O(n)$-bundle.
- If M is also orientable, TM is an $SO(n)$-bundle.
- If M has an almost complex structure, TM is a $U(n)$-bundle.
Define b_G from $\widehat{C\mathcal{W}}^{op} \to \text{Set}$ by $M \mapsto \{G\text{-bundles over } M\}$.
Classifying Spaces

The functors b_G and B

Define b_G from $\widehat{CW}^{op} \to \text{Set}$ by $M \mapsto \{ G\text{-bundles over } M \}$. We saw that $b_{O(n)}$ is representable:

Theorem

$$b_{O(n)} = [\blank, G_n(\mathbb{R}^{\infty})].$$
Classifying Spaces

The functors b_G and B

Define b_G from $\tilde{CW}^{op} \rightarrow Set$ by $M \mapsto \{G$-bundles over $M\}$. We saw that $b_{O(n)}$ is representable:

Theorem

\[b_{O(n)} = [_ , G_n(\mathbb{R}^\infty)]. \]

Any $G \subset GL(n, \mathbb{R})$ is representable (Brown representability). So there is always a space BG for which $b_G = [_ , BG]$. BG is the **classifying space** (Milnor construction).
Classifying Spaces
The functors b_G and B

Define b_G from $\tilde{CW}^{op} \to \text{Set}$ by $M \mapsto \{G\text{-bundles over } M\}$.
We saw that $b_{O(n)}$ is representable:

Theorem

$$b_{O(n)} = [\sim, G_n(\mathbb{R}^\infty)].$$

Any $G \subset GL(n, \mathbb{R})$ is representable (Brown representability). So there is always a space BG for which $b_G = [\sim, BG]$.

BG is the **classifying space** (Milnor construction).

- $BO(n) = G_n(\mathbb{R}^\infty)$.
- $BSO(n) = \tilde{G}_n(\mathbb{R}^\infty)$ (Grassmannian of oriented planes).
- $BU(n) = G_n(\mathbb{C}^\infty)$.
Characteristic Classes

Cohomology of BG

Now we can study of the twisting of a bundle using the classifying map. To study the map indirectly, pull back the cohomology of BG.

$H^*(BO(n), \mathbb{Z}_2) \cong \mathbb{Z}_2[w_1, \ldots, w_n].$

$H^*(BSO(n), \mathbb{Z}_2) \cong \mathbb{Z}_2[w_2, \ldots, w_n].$

$H^*(BU(n), \mathbb{R}) \cong \mathbb{R}[c_1, \ldots, c_n]$ (or \mathbb{Z}).

For a ring R with $1/2$ (e.g., $R = \mathbb{R}$),

$H^*(BSO(2n+1), R) = R[p_1, \ldots, p_n].$

$H^*(BSO(2n), R) = R[p_1, \ldots, p_{n-1}, e]/(e^2 = p_n/2).$

We call w_i Stiefel-Whitney classes, c_i Chern classes, p_i Pontryagin classes, and e the Euler class.
Now we can study of the twisting of a bundle using the classifying map. To study the map indirectly, pull back the cohomology of BG.

- $H^*(BO(n), \mathbb{Z}_2) \cong \mathbb{Z}_2[w_1, \ldots, w_n]$.
- $H^*(BSO(n), \mathbb{Z}_2) \cong \mathbb{Z}_2[w_2, \ldots, w_n]$.
- $H^*(BU(n), \mathbb{R}) \cong \mathbb{R}[c_1, \ldots, c_n]$ (or \mathbb{Z}).

For a ring R with $1/2$ (eg \mathbb{R}),

- $H^*(BSO(2n + 1), R) = R[p_1, \ldots, p_n]$.
- $H^*(BSO(2n), R) = R[p_1, \ldots, p_{n-1}, e]/(e^2 = p_{n/2})$.

We call w_i Stiefel-Whitney classes, c_i Chern classes, p_i Pontryagin classes, and e the Euler class.
Characteristic Classes

Definition

Let h^* be a cohomology functor (for example, $H^k(_ _ _ , \mathbb{R})$).

A characteristic class is an assignment c of a class in $h^*(M)$ given a G-bundle over M. It is natural: For ξ over N and $f: M \to N$, $c(f^* \xi) = f^* c(\xi)$.

More succinctly, c is a natural transformation between bG and h^*.

Note that pulling back a cohomology class of BG satisfies this definition. In fact, all characteristic classes must be of this form:

Theorem

$Nat(bG, h^*) \cong h^*(BG)$. This follows from contravariant Yoneda's lemma: bG is representable, and h^* can be regarded as a functor to Set.
Characteristic Classes

Definition

Let h^* be a cohomology functor (for example, $H^k(_, \mathbb{R})$).

Definition

A **characteristic class** is an assignment c of a class in $h^*(M)$ given a G-bundle over M. It is natural: For ξ over N and $f : M \to N$, $c(f^*\xi) = f^*c(\xi)$.

More succinctly, c is a **natural transformation** between bG and h^*.
Characteristic Classes

Definition

Let h^* be a cohomology functor (for example, $H^k(__, \mathbb{R})$).

Definition

A characteristic class is an assignment c of a class in $h^*(M)$ given a G-bundle over M.

It is natural: For ξ over N and $f : M \to N$, $c(f^*\xi) = f^*c(\xi)$.

More succinctly, c is a natural transformation between b_G and h^*.

Note that pulling back a cohomology class of BG satisfies this definition. In fact, all characteristic classes must be of this form:

Theorem

$\text{Nat}(b_G, h^*) \simeq h^*(BG)$.
Characteristic Classes

Definition

Let h^* be a cohomology functor (for example, $H^k(_, \mathbb{R})$).

Definition

A **characteristic class** is an assignment c of a class in $h^*(M)$ given a G-bundle over M.

It is natural: For ξ over N and $f : M \to N$, $c(f^*\xi) = f^*c(\xi)$.

More succinctly, c is a **natural transformation** between bG and h^*.

Note that pulling back a cohomology class of BG satisfies this definition. In fact, *all* characteristic classes must be of this form:

Theorem

$\text{Nat}(bG, h^*) \cong h^*(BG)$.

This follows from contravariant Yoneda's lemma: bG is representable, and h^* can be regarded as a functor to Set.
Characteristic Classes

Examples of results

A sampling of results:

- M is orientable iff $w_1(M) = 0$.
- M is the boundary of a compact manifold iff $w_i = 0 \ \forall i$.
- If $\mathbb{R}P^{2r}$ is immersed in \mathbb{R}^{2r+k}, then $k \geq 2^r - 1$.
- If M has a q-frame, then $w_n = \cdots = w_{n-q+1} = 0$.
- Oriented 3-manifolds are parallelizable.
Let ξ be a vector bundle on M.
Let $\Omega^k(M)$ be k-forms on M.
Let $\Omega^0(\xi)$ be sections of ξ.
Let ξ be a vector bundle on M.
Let $\Omega^k(M)$ be k-forms on M.
Let $\Omega^0(\xi)$ be sections of ξ.

If $\omega \in \Omega^k(M)$ and $s \in \Omega^0(\xi)$, what is $\omega \otimes s$?
We “plug in” k vectors from TM, and are just left with s.
So it is a ξ-valued k-form.
Curvature forms
Vector-valued forms

Let \(\xi \) be a vector bundle on \(M \).
Let \(\Omega^k(M) \) be \(k \)-forms on \(M \).
Let \(\Omega^0(\xi) \) be sections of \(\xi \).

If \(\omega \in \Omega^k(M) \) and \(s \in \Omega^0(\xi) \), what is \(\omega \otimes s \)?
We “plug in” \(k \) vectors from \(TM \), and are just left with \(s \).
So it is a \(\xi \)-valued \(k \)-form.

Definition

Define \(\xi \)-valued \(k \)-forms by \(\Omega^k(\xi) = \Omega^k(M) \otimes_{\Omega^0(M)} \Omega^0(\xi) \).
Curvature forms
Reinterpreting what we have done

Put a metric \langle , \rangle and connection ∇ on M.
The connection forms are defined by $\nabla_X E_i = \omega^j_i(X)E_j$.
Put a metric $\langle \cdot, \cdot \rangle$ and connection ∇ on M.

The **connection forms** are defined by $\nabla_X E_i = \omega^j_i(X) E_j$.

We can write this as $\nabla E_i = \omega^j_i \otimes E_j \in \Omega^1(TM)$.

Note also that $\nabla(X^i E_i) = dX^i \otimes E_i + X^i \nabla E_i$.
Curvature forms

Reinterpreting what we have done

Put a metric \langle , \rangle and connection ∇ on M.

The **connection forms** are defined by $\nabla_X E_i = \omega^j_i(X) E_j$.

We can write this as $\nabla E_i = \omega^j_i \otimes E_j \in \Omega^1(TM)$.

Note also that $\nabla(X^i E_i) = dX^i \otimes E_i + X^i \nabla E_i$.

This motivates a definition of a connection on a general vector bundle ξ:

Definition

A connection on ξ is an \mathbb{R}-linear map $\nabla : \Omega^0(\xi) \to \Omega^1(\xi)$, such that $\nabla(fV) = df \otimes V + f \nabla V$.
Curvature forms

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ. Define the connection forms by $\nabla E_i = \omega^j_i \otimes E_j$. Let $A = (\omega^j_i)$. Let $\Omega = dA - A \wedge A$, the matrix of curvature forms. (When $\xi = TM$, everything is the same as before.) ∇ is compatible with a metric $\langle \cdot, \cdot \rangle$ on ξ if:

$$d\langle V, W \rangle = \langle \nabla V, W \rangle + \langle V, \nabla W \rangle$$

Remarks: If ∇ compatible, then A, Ω antisymmetric WRT orthonormal frames. There is a natural way to pull back connections.
Curvature forms

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ. Define the **connection forms** by $\nabla E_i = \omega^j_i \otimes E_j$. Let $A = (\omega^j_i)$. Let $\Omega = dA - A \wedge A$, the matrix of **curvature forms**.
Curvature forms

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ. Define the **connection forms** by $\nabla E_i = \omega^j_i \otimes E_j$. Let $A = (\omega^j_i)$. Let $\Omega = dA - A \wedge A$, the matrix of **curvature forms**. (When $\xi = TM$, everything is the same as before.)
Curvature forms

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ. Define the connection forms by $\nabla E_i = \omega^j_i \otimes E_j$. Let $A = (\omega^j_i)$. Let $\Omega = dA - A \wedge A$, the matrix of curvature forms. (When $\xi = TM$, everything is the same as before.)

∇ is compatible with a metric \langle , \rangle on ξ if:

$$d\langle V, W \rangle = \langle \nabla V, W \rangle + \langle V, \nabla W \rangle$$
Curvature forms

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ. Define the connection forms by $\nabla E_i = \omega^j_i \otimes E_j$. Let $A = (\omega^j_i)$. Let $\Omega = dA - A \wedge A$, the matrix of curvature forms. (When $\xi = TM$, everything is the same as before.)

∇ is compatible with a metric \langle , \rangle on ξ if:

$$d\langle V, W \rangle = \langle \nabla V, W \rangle + \langle V, \nabla W \rangle$$

Remarks:

- If ∇ compatible, then A, Ω antisymmetric WRT orthonormal frames.
- There is a natural way to pull back connections.
Invariant polynomials

We want to apply a polynomial P to Ω and get a globally defined form. Computing Ω under a change of coordinates gives $T\Omega T^{-1}$. So we want $P(\Omega) = P(T\Omega T^{-1})$.

Example: Polynomials σ_k given by $\det(I + tA) = \sum \sigma_k(A) t^k$. So $\sigma_k(\Omega)$ is a globally defined form on M.
Invariant polynomials

We want to apply a polynomial P to Ω and get a globally defined form. Computing Ω under a change of coordinates gives $T\Omega T^{-1}$. So we want $P(\Omega) = P(T\Omega T^{-1})$.

Example:
Polynomials σ_k given by $\det(I + tA) = \sum \sigma_k(A)t^k$.
Invariant polynomials

We want to apply a polynomial P to Ω and get a globally defined form. Computing Ω under a change of coordinates gives $T\Omega T^{-1}$. So we want $P(\Omega) = P(T\Omega T^{-1})$.

Example:
Polynomials σ_k given by $\det(I + tA) = \sum \sigma_k(A)t^k$.

So $\sigma_k(\Omega)$ is a globally defined form on M.
Invariant polynomials

The Pfaffian

There is a unique polynomial Pf in the entries of $2n \times 2n$ skew-symmetric matrices such that $\text{Pf}(A)^2 = \det(A)$.

One can show $\text{Pf}(BAB^T) = \text{Pf}(A) \det(B)$. For B orthogonal, this is invariant. So for an orientable $2n$-plane bundle, $\text{Pf}(\Omega)$ is a globally defined $2n$-form.
Invariant polynomials

The Pfaffian

There is a unique polynomial Pf in the entries of $2n \times 2n$ skew-symmetric matrices such that $\text{Pf}(A)^2 = \det(A)$.

- $\text{Pf}\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} = a$
- $\text{Pf}\begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix} = af - be + dc$
Invariant polynomials

The Pfaffian

There is a unique polynomial \(\text{Pf} \) in the entries of \(2n \times 2n \) skew-symmetric matrices such that \(\text{Pf}(A)^2 = \det(A) \).

- \(\text{Pf} \left(\begin{array}{cc} 0 & a \\ -a & 0 \end{array} \right) = a \)
- \(\text{Pf} \left(\begin{array}{cccc} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{array} \right) = af - be + dc \)

One can show \(\text{Pf}(BAB^T) = \text{Pf}(A) \det(B) \).
For \(B \) orthogonal, this is invariant.
So for an orientable \(2n \)-plane bundle, \(\text{Pf}(\Omega) \) is a globally defined \(2n \)-form.
Invariant polynomials

It turns out that for invariant P:

- $P(\Omega)$ is globally defined.
- $dP(\Omega) = 0$, so we can consider the cohomology class.
- On the level of cohomology, it does not depend on ∇.
Invariant polynomials

It turns out that for invariant P:
- $P(\Omega)$ is globally defined.
- $dP(\Omega) = 0$, so we can consider the cohomology class.
- On the level of cohomology, it does not depend on ∇.

So we have an assignment of a cohomology class given a bundle. If it is natural, then it has to be a characteristic class.
Invariant polynomials

It turns out that for invariant P:

- $P(\Omega)$ is globally defined.
- $dP(\Omega) = 0$, so we can consider the cohomology class.
- On the level of cohomology, it does not depend on ∇.

So we have an assignment of a cohomology class given a bundle. If it is natural, then it has to be a characteristic class.

If ξ is a bundle on N with connection ∇, and $f : M \to N$, then $f^*(P(\Omega_\nabla)) = P(\Omega_{f^*\nabla})$.

So it is natural.
Invariant polynomials

Characteristic classes

One can show that:

- For a bundle with structure group $SO(2n)$, $\text{Pf} \left(\frac{\Omega}{2\pi} \right) = e$.

- For a complex bundle, $\det \left(I + \frac{t\Omega}{2\pi i} \right) = \sum c_k t^k$.
Invariant polynomials

Characteristic classes

One can show that:

- For a bundle with structure group $SO(2n)$, $\text{Pf} \left(\frac{\Omega}{2\pi} \right) = e$.

- For a complex bundle, $\det \left(I + \frac{t\Omega}{2\pi i} \right) = \sum c_k t^k$.

For a surface, $\Omega = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}$

So $\text{Pf} \left(\frac{\Omega}{2\pi} \right) = \frac{\omega}{2\pi} = \frac{K}{2\pi} dV$.
Chern-Gauss-Bonnet

Integrating characteristic classes (or their cup products, to get the dimension right) over M yields invariant quantities called characteristic numbers.

The Euler class gives the Euler characteristic:

$$\int_M e = \chi(M).$$

(Very rough) sketch of proof (M compact):

Let $\pi: E \to M$ be a k-plane bundle. The Thom isomorphism theorem says $\Phi : H^i(M) \cong H^{i+k}(T(E))$. $\Phi(x) = (\pi^* x) \wedge U$, where U is the Thom class.

If $s: M \to E$ is a section, $s^* U$ is the Euler class e.

Choose s for which Poincaré-Hopf applies. Then show $\int_M s^* U$ is the sum of indices of zeros of s, which is $\chi(M)$.
Chern-Gauss-Bonnet

Integrating characteristic classes (or their cup products, to get the dimension right) over M yields invariant quantities called characteristic numbers.

The Euler class gives the Euler characteristic: $\int_M e = \chi(M)$.

(Very rough) sketch of proof (M compact):

Let $\pi : E \to M$ be a k-plane bundle.

The Thom isomorphism theorem says $\Phi : H^i(M) \cong H^{i+k}(T(E))$.

$\Phi(x) = (\pi^* x) \wedge U$, where U is the Thom class.

If $s : M \to E$ is a section, $s^* U$ is the Euler class e.

Choose s for which Poincaré-Hopf applies.

Then show $\int_M s^* U$ is the sum of indices of zeros of s, which is $\chi(M)$.

Thomas Maienschein () Curvature forms and characteristic classes September 11, 2011 17 / 1
Chern-Gauss-Bonnet

Integrating characteristic classes (or their cup products, to get the dimension right) over M yields invariant quantities called characteristic numbers. The Euler class gives the Euler characteristic: $\int_M e = \chi(M)$.

(Very rough) sketch of proof (M compact):

- Let $\pi : E \to M^n$ be a k-plane bundle.
- The Thom isomorphism theorem says $\Phi : H^i(M) \cong H^{i+k}(T(E))$.
- $\Phi(x) = (\pi^* x) \wedge U$, where U is the Thom class.
- If $s : M \to E$ is a section, $s^* U$ is the Euler class e.
- Choose s for which Poincaré-Hopf applies.
- Then show $\int_M s^* U$ is the sum of indices of zeros of s, which is $\chi(M)$.

Thomas Maienschein
We can write e in terms of Ω to get:

Theorem

$$\int_M \text{Pf} \left(\frac{\Omega}{2\pi} \right) = \chi(M)$$
Chern-Gauss-Bonnet

We can write e in terms of Ω to get:

Theorem

$$\int_M \text{Pf} \left(\frac{\Omega}{2\pi} \right) = \chi(M)$$

The end!
For details see Spivak I.11, V.13 and Milnor-Stasheff