Curvature forms and characteristic classes

Thomas Maienschein

September 11, 2011

Definition

Definition

The **Grassmannian** $G_n(\mathbb{R}^{n+k})$ is the set of *n*-dimensional subspaces of \mathbb{R}^{n+k} . It is a compact manifold of dimension nk.

Definition

Definition

The **Grassmannian** $G_n(\mathbb{R}^{n+k})$ is the set of *n*-dimensional subspaces of \mathbb{R}^{n+k} . It is a compact manifold of dimension nk.

G_n(ℝ^{n+k}) ≃ G_k(ℝ^{n+k}) by taking orthogonal complements.
G₁(ℝⁿ⁺¹) ≃ ℝℙⁿ.

通 とう きょう うちょう しょう

Definition

Definition

The **Grassmannian** $G_n(\mathbb{R}^{n+k})$ is the set of *n*-dimensional subspaces of \mathbb{R}^{n+k} . It is a compact manifold of dimension nk.

G_n(ℝ^{n+k}) ≃ G_k(ℝ^{n+k}) by taking orthogonal complements.
G₁(ℝⁿ⁺¹) ≃ ℝℙⁿ.

Definition

The infinite Grassmannian $G_n(\mathbb{R}^{\infty})$ is the direct limit of the sequence:

$$G_n(\mathbb{R}^n) \subset G_n(\mathbb{R}^{n+1}) \subset \cdots \subset G_n(\mathbb{R}^{n+k}) \subset \cdots$$

(Direct limit: Take $\bigcup_{k\geq 0} G_n(\mathbb{R}^{n+k})$ and choose the finest topology such that every inclusion is continuous)

The tautological bundle

We can form an *n*-plane bundle over $G_n(\mathbb{R}^{n+k})$: Take $X \in G_n(\mathbb{R}^{n+k})$. The fiber over X is X itself. So the total space consists of pairs (*n*-plane in \mathbb{R}^{n+k} , vector in that plane).

The tautological bundle

We can form an *n*-plane bundle over $G_n(\mathbb{R}^{n+k})$: Take $X \in G_n(\mathbb{R}^{n+k})$. The fiber over X is X itself. So the total space consists of pairs (*n*-plane in \mathbb{R}^{n+k} , vector in that plane).

Definition

The **tautological bundle** over $G_n(\mathbb{R}^{n+k})$ is denoted $\gamma^n(\mathbb{R}^{n+k})$.

We also have the tautological bundle γ^n over $G_n(\mathbb{R}^\infty)$.

The tautological bundle

We can form an *n*-plane bundle over $G_n(\mathbb{R}^{n+k})$: Take $X \in G_n(\mathbb{R}^{n+k})$. The fiber over X is X itself. So the total space consists of pairs (*n*-plane in \mathbb{R}^{n+k} , vector in that plane).

Definition

The **tautological bundle** over $G_n(\mathbb{R}^{n+k})$ is denoted $\gamma^n(\mathbb{R}^{n+k})$.

We also have the tautological bundle γ^n over $G_n(\mathbb{R}^\infty)$.

• $G_1(\mathbb{R}^2)\simeq S^1$, and the tautological bundle "is" the Möbius strip.

Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k} .

通 ト イヨ ト イヨト

Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k} .

Note that $TM = g^*(\gamma^n(\mathbb{R}^{n+k}))$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k} .

Note that $TM = g^*(\gamma^n(\mathbb{R}^{n+k}))$. In fact, this works for any *n*-plane bundle over *M*, for large enough *k*:

Theorem

For any n-plane bundle ξ over M, $\xi = g^*(\gamma^n)$ for some $g : M \to G_n(\mathbb{R}^\infty)$.

Bundles over M are isomorphic iff their classifying maps are homotopic.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Generalized Gauss Map

Definition

Let $M^n \subset \mathbb{R}^{n+k}$. The **Gauss map** $g : M \to G_n(\mathbb{R}^{n+k})$ is given by identifying a tangent space with a subspace of \mathbb{R}^{n+k} .

Note that $TM = g^*(\gamma^n(\mathbb{R}^{n+k}))$. In fact, this works for any *n*-plane bundle over *M*, for large enough *k*:

Theorem

For any n-plane bundle ξ over M, $\xi = g^*(\gamma^n)$ for some $g : M \to G_n(\mathbb{R}^\infty)$.

Bundles over M are isomorphic iff their classifying maps are homotopic. Note: M must be paracompact (open covers admit locally finite refinements). This includes manifolds, metric spaces, CW complexes...

イロト 不得下 イヨト イヨト 三日

The structure group

Definition

- A *G*-atlas is a local trivialization of a bundle with transition functions $U \cap V \rightarrow G$.
- A G-bundle is a vector bundle with a G-atlas.
- G is called the structure group.

The structure group

Definition

- A *G*-atlas is a local trivialization of a bundle with transition functions $U \cap V \rightarrow G$.
- A G-bundle is a vector bundle with a G-atlas.
- G is called the structure group.

Let *M* be *n*-dimensional.

- TM is a $GL(n, \mathbb{R})$ -bundle.
- If M has a metric, TM is an O(n)-bundle.
- If M is also orientable, TM is an SO(n)-bundle.
- If M has an almost complex structure, TM is a U(n)-bundle.

The functors b_G and B

Define b_G from $\widetilde{CW}^{op} \to Set$ by $M \mapsto \{G\text{-bundles over } M\}$.

3

< (T) > <

The functors b_G and B

Define b_G from $\widetilde{CW}^{op} \to Set$ by $M \mapsto \{G\text{-bundles over } M\}$. We saw that $b_{O(n)}$ is **representable**:

Theorem

 $b_{O(n)} = [-, G_n(\mathbb{R}^\infty)].$

- 3

通 ト イヨ ト イヨト

The functors b_G and B

Define b_G from $\widetilde{CW}^{op} \to Set$ by $M \mapsto \{G\text{-bundles over } M\}$. We saw that $b_{O(n)}$ is **representable**:

Theorem

 $b_{O(n)} = [-, G_n(\mathbb{R}^\infty)].$

Any $G \subset GL(n, \mathbb{R})$ is representable (Brown representability). So there is always a space *BG* for which $b_G = [-, BG]$. *BG* is the **classifying space** (Milnor construction).

The functors b_G and B

Define b_G from $\widetilde{CW}^{op} \to Set$ by $M \mapsto \{G\text{-bundles over } M\}$. We saw that $b_{O(n)}$ is **representable**:

Theorem

 $b_{O(n)} = [-, G_n(\mathbb{R}^\infty)].$

Any $G \subset GL(n, \mathbb{R})$ is representable (Brown representability). So there is always a space *BG* for which $b_G = [-, BG]$. *BG* is the **classifying space** (Milnor construction).

くほと くほと くほと

Cohomology of BG

Now we can study of the twisting of a bundle using the classifying map. To study the map indirectly, pull back the cohomology of BG.

Cohomology of BG

Now we can study of the twisting of a bundle using the classifying map. To study the map indirectly, pull back the cohomology of BG.

- $H^*(BO(n),\mathbb{Z}_2)\simeq \mathbb{Z}_2[w_1,\ldots,w_n].$
- $H^*(BSO(n),\mathbb{Z}_2)\simeq \mathbb{Z}_2[w_2,\ldots,w_n].$
- $H^*(BU(n),\mathbb{R})\simeq\mathbb{R}[c_1,\ldots,c_n]$ (or \mathbb{Z}).

For a ring R with 1/2 (eg \mathbb{R}),

- $H^*(BSO(2n+1), R) = R[p_1, ..., p_n]$
- $H^*(BSO(2n), R) = R[p_1, \ldots, p_{n-1}, e]/(e^2 = p_{n/2}).$

We call w_i Stiefel-Whitney classes, c_i Chern classes, p_i Pontryagin classes, and e the Euler class.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Definition

Let h^* be a cohomology functor (for example, $H^k(-,\mathbb{R})$).

• • • •

3

Definition

Let h^* be a cohomology functor (for example, $H^k(-,\mathbb{R})$).

Definition

A characteristic class is an assignment c of a class in $h^*(M)$ given a G-bundle over M. It is natural: For ξ over N and $f : M \to N$, $c(f^*\xi) = f^*c(\xi)$.

More succinctly, c is a **natural transformation** between b_G and h^* .

Definition

Let h^* be a cohomology functor (for example, $H^k(-,\mathbb{R})$).

Definition

A characteristic class is an assignment c of a class in $h^*(M)$ given a G-bundle over M. It is natural: For ξ over N and $f: M \to N$, $c(f^*\xi) = f^*c(\xi)$.

More succinctly, c is a **natural transformation** between b_G and h^* . Note that pulling back a cohomology class of BG satisfies this definition. In fact, *all* characteristic classes must be of this form:

Theorem

 $Nat(b_G, h^*) \simeq h^*(BG).$

- 4 同 6 4 日 6 4 日 6

Definition

Let h^* be a cohomology functor (for example, $H^k(-,\mathbb{R})$).

Definition

A characteristic class is an assignment c of a class in $h^*(M)$ given a G-bundle over M. It is natural: For ξ over N and $f : M \to N$, $c(f^*\xi) = f^*c(\xi)$.

More succinctly, c is a **natural transformation** between b_G and h^* . Note that pulling back a cohomology class of BG satisfies this definition. In fact, *all* characteristic classes must be of this form:

Theorem

 $Nat(b_G, h^*) \simeq h^*(BG).$

This follows from contravariant Yoneda's lemma: b_G is representable, and h^* can be regarded as a functor to *Set*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Examples of results

A sampling of results:

- M is orientable iff $w_1(M) = 0$.
- *M* is the boundary of a compact manifold iff $w_i = 0 \ \forall i$.
- If $\mathbb{R}P^{2^r}$ is immersed in \mathbb{R}^{2^r+k} , then $k \ge 2^r 1$.
- If M has a q-frame, then $w_n = \cdots = w_{n-q+1} = 0$.
- Oriented 3-manifolds are parallelizable.

Vector-valued forms

Let ξ be a vector bundle on M. Let $\Omega^k(M)$ be k-forms on M. Let $\Omega^0(\xi)$ be sections of ξ .

Vector-valued forms

Let ξ be a vector bundle on M. Let $\Omega^k(M)$ be k-forms on M. Let $\Omega^0(\xi)$ be sections of ξ .

If $\omega \in \Omega^k(M)$ and $s \in \Omega^0(\xi)$, what is $\omega \otimes s$? We "plug in" k vectors from TM, and are just left with s. So it is a ξ -valued k-form.

Vector-valued forms

Let ξ be a vector bundle on M. Let $\Omega^k(M)$ be k-forms on M. Let $\Omega^0(\xi)$ be sections of ξ .

If $\omega \in \Omega^k(M)$ and $s \in \Omega^0(\xi)$, what is $\omega \otimes s$? We "plug in" k vectors from TM, and are just left with s. So it is a ξ -valued k-form.

Definition

Define ξ -valued k-forms by $\Omega^k(\xi) = \Omega^k(M) \otimes_{\Omega^0(M)} \Omega^0(\xi)$.

Reinterpreting what we have done

Put a metric \langle,\rangle and connection ∇ on M. The **connection forms** are defined by $\nabla_X E_i = \omega_i^j(X)E_j$.

3

< (T) > <

Reinterpreting what we have done

Put a metric \langle,\rangle and connection ∇ on M. The **connection forms** are defined by $\nabla_X E_i = \omega_i^j(X)E_j$.

We can write this as $\nabla E_i = \omega_i^j \otimes E_j \in \Omega^1(TM)$. Note also that $\nabla(X^i E_i) = dX^i \otimes E_i + X^i \nabla E_i$.

Reinterpreting what we have done

Put a metric \langle,\rangle and connection ∇ on M. The **connection forms** are defined by $\nabla_X E_i = \omega_i^j(X)E_j$.

We can write this as $\nabla E_i = \omega_i^j \otimes E_j \in \Omega^1(TM)$. Note also that $\nabla(X^i E_i) = dX^i \otimes E_i + X^i \nabla E_i$.

This motivates a definition of a connection on a general vector bundle ξ :

Definition

A connection on ξ is an \mathbb{R} -linear map $\nabla : \Omega^0(\xi) \to \Omega^1(\xi)$, such that $\nabla(fV) = df \otimes V + f \nabla V$.

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ .

3

-

< 🗗 🕨 🔸

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ . Define the **connection forms** by $\nabla E_i = \omega_i^j \otimes E_j$. Let $A = (\omega_i^j)$. Let $\Omega = dA - A \wedge A$, the matrix of **curvature forms**.

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ . Define the **connection forms** by $\nabla E_i = \omega_i^j \otimes E_j$. Let $A = (\omega_i^j)$. Let $\Omega = dA - A \wedge A$, the matrix of **curvature forms**. (When $\xi = TM$, everything is the same as before.)

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ . Define the **connection forms** by $\nabla E_i = \omega_i^j \otimes E_j$. Let $A = (\omega_i^j)$. Let $\Omega = dA - A \wedge A$, the matrix of **curvature forms**. (When $\xi = TM$, everything is the same as before.)

 ∇ is **compatible** with a metric \langle, \rangle on ξ if:

$$d\langle V, W \rangle = \langle \nabla V, W \rangle + \langle V, \nabla W \rangle$$

Generalization

Let ∇ be a connection on a bundle ξ over M. Choose a local frame $\{E_i\}$ for ξ . Define the **connection forms** by $\nabla E_i = \omega_i^j \otimes E_j$. Let $A = (\omega_i^j)$. Let $\Omega = dA - A \wedge A$, the matrix of **curvature forms**. (When $\xi = TM$, everything is the same as before.)

 ∇ is **compatible** with a metric \langle, \rangle on ξ if:

$$d\langle V,W\rangle = \langle \nabla V,W\rangle + \langle V,\nabla W\rangle$$

Remarks:

- If ∇ compatible, then A, Ω antisymmetric WRT orthonormal frames.
- There is a natural way to pull back connections.

We want to apply a polynomial P to Ω and get a globally defined form. Computing Ω under a change of coordinates gives $T\Omega T^{-1}$. So we want $P(\Omega) = P(T\Omega T^{-1})$.

We want to apply a polynomial P to Ω and get a globally defined form. Computing Ω under a change of coordinates gives $T\Omega T^{-1}$. So we want $P(\Omega) = P(T\Omega T^{-1})$.

Example: Polynomials σ_k given by det $(I + tA) = \sum \sigma_k(A)t^k$.

- 3

We want to apply a polynomial P to Ω and get a globally defined form. Computing Ω under a change of coordinates gives $T\Omega T^{-1}$. So we want $P(\Omega) = P(T\Omega T^{-1})$.

Example: Polynomials σ_k given by det $(I + tA) = \sum \sigma_k(A)t^k$.

So $\sigma_k(\Omega)$ is a globally defined form on *M*.

- 31

There is a unique polynomial Pf in the entries of $2n \times 2n$ skew-symmetric matrices such that $Pf(A)^2 = det(A)$.

Invariant polynomials The Pfaffian

There is a unique polynomial Pf in the entries of $2n \times 2n$ skew-symmetric matrices such that $Pf(A)^2 = det(A)$.

•
$$\operatorname{Pf} \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} = a$$

• $\operatorname{Pf} \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix} = af - be + dc$

Invariant polynomials The Pfaffian

There is a unique polynomial Pf in the entries of $2n \times 2n$ skew-symmetric matrices such that $Pf(A)^2 = det(A)$.

•
$$\operatorname{Pf} \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} = a$$

• $\operatorname{Pf} \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix} = af - be + dc$

One can show $Pf(BAB^T) = Pf(A) det(B)$. For *B* orthogonal, this is invariant. So for an orientable 2*n*-plane bundle, $Pf(\Omega)$ is a globally defined 2*n*-form.

It turns out that for invariant P:

- $P(\Omega)$ is globally defined.
- $dP(\Omega) = 0$, so we can consider the cohomology class.
- $\bullet\,$ On the level of cohomology, it does not depend on $\nabla.$

It turns out that for invariant P:

- $P(\Omega)$ is globally defined.
- $dP(\Omega) = 0$, so we can consider the cohomology class.
- On the level of cohomology, it does not depend on $\nabla.$

So we have an assignment of a cohomology class given a bundle. If it is natural, then it has to be a characteristic class.

It turns out that for invariant P:

- $P(\Omega)$ is globally defined.
- $dP(\Omega) = 0$, so we can consider the cohomology class.
- On the level of cohomology, it does not depend on $\nabla.$

So we have an assignment of a cohomology class given a bundle. If it is natural, then it has to be a characteristic class.

If ξ is a bundle on N with connection ∇ , and $f : M \to N$, then $f^*(P(\Omega_{\nabla})) = P(\Omega_{f^*\nabla})$. So it is natural.

Characteristic classes

One can show that:

- For a bundle with structure group SO(2n), $Pf\left(\frac{\Omega}{2\pi}\right) = e$.
- For a complex bundle, $\det\left(I + \frac{t\Omega}{2\pi i}\right) = \sum c_k t^k$.

Characteristic classes

One can show that:

- For a bundle with structure group SO(2n), $Pf\left(\frac{\Omega}{2\pi}\right) = e$.
- For a complex bundle, det $\left(I + \frac{t\Omega}{2\pi i}\right) = \sum c_k t^k$.

For a surface,
$$\Omega = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}$$

So $\operatorname{Pf}\left(\frac{\Omega}{2\pi}\right) = \frac{\omega}{2\pi} = \frac{K}{2\pi}dV.$

Integrating characteristic classes (or their cup products, to get the dimension right) over M yields invariant quantities called characteristic numbers.

Integrating characteristic classes (or their cup products, to get the dimension right) over M yields invariant quantities called characteristic numbers.

The Euler class gives the Euler characteristic: $\int_M e = \chi(M)$.

Integrating characteristic classes (or their cup products, to get the dimension right) over M yields invariant quantities called characteristic numbers.

The Euler class gives the Euler characteristic: $\int_M e = \chi(M)$.

(Very rough) sketch of proof (*M* compact):

- Let $\pi: E \to M^n$ be a *k*-plane bundle.
- The Thom isomorphism theorem says $\Phi : H^i(M) \simeq H^{i+k}(T(E))$.
- $\Phi(x) = (\pi^* x) \wedge U$, where U is the Thom class.
- If $s: M \to E$ is a section, s^*U is the Euler class e.
- Choose *s* for which Poincaré-Hopf applies.
- Then show $\int_M s^* U$ is the sum of indices of zeros of s, which is $\chi(M)$.

We can write e in terms of Ω to get:

Theorem

$$\int_{\mathcal{M}} \operatorname{Pf}\left(\frac{\Omega}{2\pi}\right) = \chi(\mathcal{M})$$

< 4 → <

3

We can write e in terms of Ω to get:

Theorem

$$\int_{M} \Pr\left(\frac{\Omega}{2\pi}\right) = \chi(M)$$

The end! For details see Spivak I.11, V.13 and Milnor-Stasheff