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In algebraic geometry we study varieties.
These are zero loci of polynomials.

This will be a talk in three parts:

(1) Projective space and Bézout’s theorem,

(2) The moduli space of plane conics,

(3) The moduli space of stable quotients (sort of).
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Section 1

Projective Space and Bézout’s Theorem
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Projective Space and Bézout’s Theorem
Basic Observations

Let’s look at some zero loci of polynomials in R2.

Denote by Z (f ) the zero locus of a polynomial f .
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Projective Space and Bézout’s Theorem
Basic Observations

Polynomial degrees 1 and 1; intersection points: 1

Figure: Z (y − x), Z (y + 3x − 1)
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Projective Space and Bézout’s Theorem
Basic Observations

Polynomial degrees 1 and 2; intersection points: 2

Figure: Z (y − x), Z (x2 + y2 − 9)

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 6 / 46



Projective Space and Bézout’s Theorem
Basic Observations

Polynomial degrees 2 and 2; intersection points: 4

Figure: Z (xy − 1), Z (x2 + y2 − 9)
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Projective Space and Bézout’s Theorem
Basic Observations

Polynomial degrees 2 and 3; intersection points: 6

Figure: Z (y2 − x3 − 3x2 + x + 3), Z (x − 3y2 + 4)
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Projective Space and Bézout’s Theorem
Basic Observations

Question

Is it true that
#Z (f ) ∩ Z (g) = (deg f )(deg g)?

There are four reasons this can fail:

(i) The intersection is infinite (f = g = 0),

(ii) The intersection is complex (y = x2 + 1 and y = 0),

(iii) The intersection has some multiplicity (y = x2 and y = 0),

(iv) The intersection “occurs at infinity” (y = 0 and y = 1).
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Projective Space and Bézout’s Theorem
Basic Observations

We can’t fix infinite intersections, so this will be an exception.

Allowing C and counting multiplicity should be familiar.

The fundamental theorem of algebra says

#Z
(
y − f (x)

)
∩ Z (y) = deg f .

Let’s see how to handle “intersections at infinity” using projective space.
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Projective Space and Bézout’s Theorem
Basic Observations

As the slope of the line increases, an intersection point goes to infinity.

Figure: Z (y − x2), Z (y − ax) with a increasing.
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Projective Space and Bézout’s Theorem
Basic Observations

The intersection is missing a point: Back

Figure: Z (y − x2), Z (x)
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Projective Space and Bézout’s Theorem
Projective Space

Definition

Define Pn = {lines through the origin in Rn+1}

Denote a point in Pn by [x0 : x1 : · · · : xn], at least one xi 6= 0.
This represents the line

{
(λx0, λx1, . . . , λxn) |λ ∈ R}.

Note that
[x0 : x1 : · · · : xn] = [λx0 : λx1 : · · · : λxn]

for any λ 6= 0.
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Projective Space and Bézout’s Theorem
Projective Space

Consider U =
{

[x : y : z ] | z 6= 0
}
⊂ P2.

Any such point can be represented uniquely as [X : Y : 1].
So U is just R2.

What about the rest of P2?
It consists of the lines in the plane z = 0.
So it is just P1. This will be our “infinity”.

In general, Pn looks like Rn, with an extra Pn−1 “at infinity”.
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Projective Space and Bézout’s Theorem
Homogenization

A polynomial is homogeneous if all its terms have the same degree.
We can homogenize any polynomial f (x , y).

Example

f = x3 − 2xy + y − 5
fh = x3 − 2xyz + yz2 − 5z3

This is useful because:

(i) If fh(x , y , z) = 0, then fh(λx , λy , λz) = 0.
So it makes sense to think of Z (fh) ⊂ P2.

(ii) fh(x , y , 1) = 0 exactly when f (x , y) = 0.
So Z (f ) is the intersection of Z (fh) with R2 ⊂ P2.
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Projective Space and Bézout’s Theorem
Homogenization

Figure: f = x2 + y2 − 1, fh = x2 + y2 − z2
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Projective Space and Bézout’s Theorem
Homogenization

Figure: f = y − x3, fh = yz2 − x3
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Projective Space and Bézout’s Theorem
Homogenization

Line and conic that intersect “at infinity”: Original

y = x2 − 1 (fh = yz − x2 + z2)

x = 0 (gh = x)
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Projective Space and Bézout’s Theorem
Homogenization

There are two points in Z (yz − x2 + z2) ∩ Z (x):

In R2 ⊂ P2: [0 : −1 : 1],

At “infinity”: [0 : 1 : 0].
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Projective Space and Bézout’s Theorem
Homogenization

Lines that intersect in R2:

x + 2y + 2 = 0 (fh = x + 2y + 2z)

−2x + y − 1 = 0 (gh = −2x + y − z)
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Projective Space and Bézout’s Theorem
Homogenization

Lines that intersect “at infinity”:

x = 3 (fh = x − 3z)

x = −3 (gh = x + 3z)
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Projective Space and Bézout’s Theorem
Homogenization

We were using RP2, but of course we need CP2:

x2 + y2 = 1 (fh = x2 + y2 − z2)

x2 + y2 = 4 (gh = x2 + y2 − 4z2)
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Projective Space and Bézout’s Theorem
Bézout’s Theorem

Working in Pn over C gets us the following:

A variety X ⊂ Pn has a degree.

The hypersurface Z (f ) has degree deg f .

If X1, . . . ,Xn are hypersurfaces with 0-dimensional intersection,

#
⋂

Xi =
∏

degXi

This is Bézout’s Theorem.
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Bézout’s Theorem

Working in Pn over C gets us the following:

A variety X ⊂ Pn has a degree.

The hypersurface Z (f ) has degree deg f .

If X1, . . . ,Xn are hypersurfaces with 0-dimensional intersection,

#
⋂

Xi =
∏

degXi
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Bézout’s Theorem

Working in Pn over C gets us the following:

A variety X ⊂ Pn has a degree.

The hypersurface Z (f ) has degree deg f .

If X1, . . . ,Xn are hypersurfaces with 0-dimensional intersection,

#
⋂

Xi =
∏

degXi
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Section 2

Classical Example: Plane Conics
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Classical Example: Plane Conics
Moduli space of conics

A plane conic is a curve in P2 defined by a degree 2 polynomial:

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz = 0

We can regard this as a point [A : B : C : D : E : F ] ∈ P5.

P5 is a moduli space of plane conics.

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 25 / 46



Classical Example: Plane Conics
Moduli space of conics

A plane conic is a curve in P2 defined by a degree 2 polynomial:

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz = 0

We can regard this as a point [A : B : C : D : E : F ] ∈ P5.

P5 is a moduli space of plane conics.

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 25 / 46



Classical Example: Plane Conics
Moduli space of conics

Example

Conic: xy = 1. Homogenize: xy − z2 = 0.

This lives at the point [0 : 0 : −1 : 1 : 0 : 0].

Example

Conic: xy = 0. This is a pair of lines.

This lives at the point [0 : 0 : 0 : 1 : 0 : 0].
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Classical Example: Plane Conics
Moduli space of conics

A conic is singular if it is a pair of lines (xy = 0).

This happens exactly when:∣∣∣∣∣∣
2A D E
D 2B F
E F 2C

∣∣∣∣∣∣ = 0.∗

This cuts out a degree 3 hypersurface ∆ ⊂ P5.

P5 is a compactification of the moduli space of smooth conics,
∆ is the boundary of the moduli space.

∗4ABC + DEF − AF 2 − BE 2 − CD2 = 0
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Classical Example: Plane Conics
Moduli space of conics

Inside of ∆ live the double lines:

(αx + βy + γz)2 = 0

The locus ∆double is exactly the singular locus of ∆.

∆double is the image of the Veronese embedding:

P2 ↪→ P5 : [α : β : γ] 7→ [α2 : β2 : γ2 : 2αβ : 2αγ : 2βγ]
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Classical Example: Plane Conics
Passing through points and tangent to lines

Fix P ∈ P2. Let ZP = {conics passing through P} ⊂ P5.

This is a hyperplane in P5:

Write P = [x0 : y0 : z0]. Find [A : B : C : D : E : F ] so that

(x2
0 )A + (y2

0 )B + (z2
0 )C + (x0y0)D + (x0z0)E + (y0z0)F = 0

This is just a linear equation in A,B,C ,D,E ,F .
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Classical Example: Plane Conics
Passing through points and tangent to lines

Question

Fix 5 points P1, . . . ,P5 ∈ P2.

How many conics pass through all of P1, . . . ,P5?

Generically, the hyperplanes ZPi
will intersect transversally.

#
⋂

ZPi
=
∏

degZPi
= 1

If no 3 points are collinear, nothing in ∆ can pass through all 5 points.
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Classical Example: Plane Conics
Passing through points and tangent to lines

Fix a line L ⊂ P2. Let ZL = {conics tangent to L} ⊂ P5.†

This is a degree 2 hypersurface in P5 (next slide).

Since the ZP ’s and ZL’s are all hypersurfaces in P5,
intersecting 5 of them should give finitely many points to count.

†C is tangent to L if #C ∩ L = 1 (with multiplicity 2).
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Classical Example: Plane Conics
Passing through points and tangent to lines

Suppose L is the line x = 0.

Find [A : B : C : D : E : F ] so that the system{
x = 0
Ax2 + By2 + Cz2 + Dxy + Exz + Fyz = 0

has < 2 solutions.

Look in the chart z = 1. Set x = 0.

By2 + Fy + C = 0

This has < 2 solutions when its discriminant is zero:

F 2 − 4BC = 0
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Classical Example: Plane Conics
Passing through points and tangent to lines

Question

Fix 4 points P1, . . . ,P4 ∈ P2 and a line L ⊂ P2.

How many conics pass through P1, . . . ,P4 and are tangent to L?

Bézout:

#ZP1 ∩ ZP2 ∩ ZP3 ∩ ZP4 ∩ ZL = 1 · 1 · 1 · 1 · 2 = 2

These will be smooth:
⋂
ZPi

will generally contain 3 singular conics, but
they won’t be tangent to a general line.
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Classical Example: Plane Conics
Passing through points and tangent to lines

Question

Fix 5 lines L1, . . . , L5 ⊂ P2.

How many conics are tangent to all of L1, . . . , L5?

Bézout:

#
⋂

ZLi =
∏

degZLi = 25 = 32

This is wrong! The problem is that each ZLi contains all of ∆double.
Bézout doesn’t apply because

⋂
ZLi isn’t finite.

One fix is to blow up ∆double. This will separate the ZLi .
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Classical Example: Plane Conics
Passing through points and tangent to lines

Blowing up C2 at P (BlPC2).

{P}: the center

π−1(P): the exceptional divisor

π−1(L): the total transform

The proper transform of L is:

L̃ = π−1(L \ {P})

The general principle is to supplement
the points in the center with additional
information: how is L crossing P?

Bl∆double
P5 = complete conics.
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Section 3

Modern Example: Maps to Projective Space
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Modern Example: Maps to Projective Space
Maps to Projective Space

A Riemann surface C is a compact surface that locally looks like C.
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Modern Example: Maps to Projective Space
Maps to Projective Space

We want to build a moduli space Q of pairs (C , f ) where

C is a Riemann surface (of some fixed genus),

f is a map C → Pn.

That is, points of Q exactly correspond to such pairs (C , f ).
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Modern Example: Maps to Projective Space
Maps to Projective Space

How can we get a map C → Pn?

If s0, . . . , sn are functions on C ,

C → Pn : p 7→ [s0(p) : · · · : sn(p)]

Really important technical point we will mostly ignore:

The only functions on C are constant.

We need to use global sections of line bundles instead.

Line bundles have a degree.

If degL = d , global sections vanish at d points (multiplicity).
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Modern Example: Maps to Projective Space
Maps to Projective Space

If s0(p) = · · · = sn(p) = 0, our map is not defined at p.

A rational map is defined everywhere except finitely many points.

Degree of our rational map = degree of the line bundle the si come from.
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Modern Example: Maps to Projective Space
The moduli space of maps

Using fancy but standard techniques,
We can build a compact moduli space Q:

The following are in 1− 1 correspondence:

Points of Q,

Pairs (C , f ) where f is a degree d rational map C → Pn.

The boundary consists of (C , f ) where f is not defined everywhere.
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Modern Example: Maps to Projective Space
The moduli space of maps

To recap:

We built a moduli space of “plane conics”.
It was compact, at the cost of including singular conics.

We can build a moduli space of “maps” C → Pn.
It is compact, at the cost of including rational maps.
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Modern Example: Maps to Projective Space
The Boundary

Let’s investigate the boundary of Q.

The simultaneous order of vanishing of s0, . . . , sn:
For each p ∈ C , add the minimum of

The order of vanishing of s0 at p,

The order of vanishing of s1 at p,

. . .

The order of vanishing of sn at p.

Define Zk ⊂ Q to be{
(C , [s0 : · · · : sn]) | si vanish simultaneously to order at least k

}
.

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 43 / 46



Modern Example: Maps to Projective Space
The Boundary

Let’s investigate the boundary of Q.

The simultaneous order of vanishing of s0, . . . , sn:

For each p ∈ C , add the minimum of

The order of vanishing of s0 at p,

The order of vanishing of s1 at p,

. . .

The order of vanishing of sn at p.

Define Zk ⊂ Q to be{
(C , [s0 : · · · : sn]) | si vanish simultaneously to order at least k

}
.

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 43 / 46



Modern Example: Maps to Projective Space
The Boundary

Let’s investigate the boundary of Q.

The simultaneous order of vanishing of s0, . . . , sn:
For each p ∈ C , add the minimum of

The order of vanishing of s0 at p,

The order of vanishing of s1 at p,

. . .

The order of vanishing of sn at p.

Define Zk ⊂ Q to be{
(C , [s0 : · · · : sn]) | si vanish simultaneously to order at least k

}
.

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 43 / 46



Modern Example: Maps to Projective Space
The Boundary

Let’s investigate the boundary of Q.

The simultaneous order of vanishing of s0, . . . , sn:
For each p ∈ C , add the minimum of

The order of vanishing of s0 at p,

The order of vanishing of s1 at p,

. . .

The order of vanishing of sn at p.

Define Zk ⊂ Q to be{
(C , [s0 : · · · : sn]) | si vanish simultaneously to order at least k

}
.

Thomas D. Maienschein () Moduli Spaces and Enumerative Geometry April 30, 2014 43 / 46



Modern Example: Maps to Projective Space
The Boundary

To recap:

For plane conics, the boundary looked like:

∆double ⊂ ∆ ⊂ P5

Here the boundary looks like:

Zd ⊂ Zd−1 ⊂ · · · ⊂ Z1 ⊂ Q
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Modern Example: Maps to Projective Space
Blowing Up

Ideal boundary for intersection theory (?):

Made of some codimension 1 pieces,

Each piece is non-singular,

The pieces are not tangent to one another.

In the plane conic example, ∆ was singular.
When we blow up P5 along ∆double, the new boundary satisfies (?).
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Modern Example: Maps to Projective Space
Blowing Up

The boundary Z1 of Q is singular and codimension n − 1.

How do we get it to satisfy (?)?

Do the following process:

Blow up Q along Zd ,

Blow up the result along (the proper transform of) Zd−1,

. . .

Blow up the result along (the proper transform of) Z2,

Blow up the result along (the proper transform of) Z1.
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