Moduli Spaces and Enumerative Geometry

Thomas D. Maienschein

April 30, 2014

In algebraic geometry we study varieties.
These are zero loci of polynomials.

In algebraic geometry we study varieties.
These are zero loci of polynomials.

This will be a talk in three parts:

In algebraic geometry we study varieties.
These are zero loci of polynomials.

This will be a talk in three parts:
(1) Projective space and Bézout's theorem,

In algebraic geometry we study varieties.
These are zero loci of polynomials.

This will be a talk in three parts:
(1) Projective space and Bézout's theorem,
(2) The moduli space of plane conics,

In algebraic geometry we study varieties.
These are zero loci of polynomials.

This will be a talk in three parts:
(1) Projective space and Bézout's theorem,
(2) The moduli space of plane conics,
(3) The moduli space of stable quotients (sort of).

Section 1

Projective Space and Bézout's Theorem

Projective Space and Bézout's Theorem

Basic Observations

Let's look at some zero loci of polynomials in \mathbb{R}^{2}.

Projective Space and Bézout's Theorem

Basic Observations

Let's look at some zero loci of polynomials in \mathbb{R}^{2}.
Denote by $Z(f)$ the zero locus of a polynomial f.

Projective Space and Bézout's Theorem

Basic Observations

Polynomial degrees 1 and 1 ; intersection points: 1

Figure: $Z(y-x), \quad Z(y+3 x-1)$

Projective Space and Bézout's Theorem

Basic Observations

Polynomial degrees 1 and 2; intersection points: 2

Figure: $Z(y-x), Z\left(x^{2}+y^{2}-9\right)$

Projective Space and Bézout's Theorem

Basic Observations

Polynomial degrees 2 and 2; intersection points: 4

Figure: $Z(x y-1), \quad Z\left(x^{2}+y^{2}-9\right)$

Projective Space and Bézout's Theorem

Basic Observations

Polynomial degrees 2 and 3; intersection points: 6

Figure: $Z\left(y^{2}-x^{3}-3 x^{2}+x+3\right), \quad Z\left(x-3 y^{2}+4\right)$

Projective Space and Bézout's Theorem

Basic Observations

Question
Is it true that

$$
\# Z(f) \cap Z(g)=(\operatorname{deg} f)(\operatorname{deg} g) ?
$$

Projective Space and Bézout's Theorem

Basic Observations

Question

Is it true that

$$
\# Z(f) \cap Z(g)=(\operatorname{deg} f)(\operatorname{deg} g) ?
$$

There are four reasons this can fail:

Projective Space and Bézout's Theorem

Basic Observations

Question

Is it true that

$$
\# Z(f) \cap Z(g)=(\operatorname{deg} f)(\operatorname{deg} g) ?
$$

There are four reasons this can fail:
(i) The intersection is infinite $(f=g=0)$,

Projective Space and Bézout's Theorem

Basic Observations

Question

Is it true that

$$
\# Z(f) \cap Z(g)=(\operatorname{deg} f)(\operatorname{deg} g) ?
$$

There are four reasons this can fail:
(i) The intersection is infinite $(f=g=0)$,
(ii) The intersection is complex $\left(y=x^{2}+1\right.$ and $\left.y=0\right)$,

Projective Space and Bézout's Theorem

Basic Observations

Question

Is it true that

$$
\# Z(f) \cap Z(g)=(\operatorname{deg} f)(\operatorname{deg} g) ?
$$

There are four reasons this can fail:
(i) The intersection is infinite $(f=g=0)$,
(ii) The intersection is complex $\left(y=x^{2}+1\right.$ and $\left.y=0\right)$,
(iii) The intersection has some multiplicity $\left(y=x^{2}\right.$ and $\left.y=0\right)$,

Projective Space and Bézout's Theorem

Basic Observations

Question

Is it true that

$$
\# Z(f) \cap Z(g)=(\operatorname{deg} f)(\operatorname{deg} g) ?
$$

There are four reasons this can fail:
(i) The intersection is infinite $(f=g=0)$,
(ii) The intersection is complex $\left(y=x^{2}+1\right.$ and $\left.y=0\right)$,
(iii) The intersection has some multiplicity ($y=x^{2}$ and $y=0$),
(iv) The intersection "occurs at infinity" ($y=0$ and $y=1$).

Projective Space and Bézout's Theorem

Basic Observations

We can't fix infinite intersections, so this will be an exception.

Projective Space and Bézout's Theorem

Basic Observations

We can't fix infinite intersections, so this will be an exception.

Allowing \mathbb{C} and counting multiplicity should be familiar.
The fundamental theorem of algebra says

$$
\# Z(y-f(x)) \cap Z(y)=\operatorname{deg} f
$$

Projective Space and Bézout's Theorem

Basic Observations

We can't fix infinite intersections, so this will be an exception.

Allowing \mathbb{C} and counting multiplicity should be familiar.
The fundamental theorem of algebra says

$$
\# Z(y-f(x)) \cap Z(y)=\operatorname{deg} f
$$

Let's see how to handle "intersections at infinity" using projective space.

Projective Space and Bézout's Theorem

Basic Observations

As the slope of the line increases, an intersection point goes to infinity.

Figure: $Z\left(y-x^{2}\right), \quad Z(y-a x)$ with a increasing.

Projective Space and Bézout's Theorem

Basic Observations

The intersection is missing a point:

```
Back
```


Figure: $Z\left(y-x^{2}\right), \quad Z(x)$

Projective Space and Bézout's Theorem
 Projective Space

Definition

Define $\mathbb{P}^{n}=\left\{\right.$ lines through the origin in $\left.\mathbb{R}^{n+1}\right\}$

Projective Space and Bézout's Theorem

Projective Space

Definition

Define $\mathbb{P}^{n}=\left\{\right.$ lines through the origin in $\left.\mathbb{R}^{n+1}\right\}$

Denote a point in \mathbb{P}^{n} by $\left[x_{0}: x_{1}: \cdots: x_{n}\right]$, at least one $x_{i} \neq 0$. This represents the line $\left\{\left(\lambda x_{0}, \lambda x_{1}, \ldots, \lambda x_{n}\right) \mid \lambda \in \mathbb{R}\right\}$.

Projective Space and Bézout's Theorem

Projective Space

Definition

Define $\mathbb{P}^{n}=\left\{\right.$ lines through the origin in $\left.\mathbb{R}^{n+1}\right\}$

Denote a point in \mathbb{P}^{n} by $\left[x_{0}: x_{1}: \cdots: x_{n}\right]$, at least one $x_{i} \neq 0$. This represents the line $\left\{\left(\lambda x_{0}, \lambda x_{1}, \ldots, \lambda x_{n}\right) \mid \lambda \in \mathbb{R}\right\}$.

Note that

$$
\left[x_{0}: x_{1}: \cdots: x_{n}\right]=\left[\lambda x_{0}: \lambda x_{1}: \cdots: \lambda x_{n}\right]
$$

for any $\lambda \neq 0$.

Projective Space and Bézout's Theorem

Projective Space

Consider $U=\{[x: y: z] \mid z \neq 0\} \subset \mathbb{P}^{2}$.
Any such point can be represented uniquely as $[X: Y: 1]$. So U is just \mathbb{R}^{2}.

Projective Space and Bézout's Theorem

Projective Space

Consider $U=\{[x: y: z] \mid z \neq 0\} \subset \mathbb{P}^{2}$.
Any such point can be represented uniquely as $[X: Y: 1]$. So U is just \mathbb{R}^{2}.

What about the rest of \mathbb{P}^{2} ?
It consists of the lines in the plane $z=0$.
So it is just \mathbb{P}^{1}. This will be our "infinity".

Projective Space and Bézout's Theorem

Projective Space

Consider $U=\{[x: y: z] \mid z \neq 0\} \subset \mathbb{P}^{2}$.
Any such point can be represented uniquely as $[X: Y: 1]$.
So U is just \mathbb{R}^{2}.

What about the rest of \mathbb{P}^{2} ?
It consists of the lines in the plane $z=0$.
So it is just \mathbb{P}^{1}. This will be our "infinity".
In general, \mathbb{P}^{n} looks like \mathbb{R}^{n}, with an extra \mathbb{P}^{n-1} "at infinity".

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Example

$$
\begin{aligned}
& f=x^{3}-2 x y+y-5 \\
& f_{h}=x^{3}-2 x y z+y z^{2}-5 z^{3}
\end{aligned}
$$

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Example

$$
\begin{aligned}
& f=x^{3}-2 x y+y-5 \\
& f_{h}=x^{3}-2 x y z+y z^{2}-5 z^{3}
\end{aligned}
$$

This is useful because:

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Example

$$
\begin{aligned}
& f=x^{3}-2 x y+y-5 \\
& f_{h}=x^{3}-2 x y z+y z^{2}-5 z^{3}
\end{aligned}
$$

This is useful because:
(i) If $f_{h}(x, y, z)=0$, then $f_{h}(\lambda x, \lambda y, \lambda z)=0$.

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Example

$$
\begin{aligned}
& f=x^{3}-2 x y+y-5 \\
& f_{h}=x^{3}-2 x y z+y z^{2}-5 z^{3}
\end{aligned}
$$

This is useful because:
(i) If $f_{h}(x, y, z)=0$, then $f_{h}(\lambda x, \lambda y, \lambda z)=0$.

So it makes sense to think of $Z\left(f_{h}\right) \subset \mathbb{P}^{2}$.

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Example

$$
\begin{aligned}
& f=x^{3}-2 x y+y-5 \\
& f_{h}=x^{3}-2 x y z+y z^{2}-5 z^{3}
\end{aligned}
$$

This is useful because:
(i) If $f_{h}(x, y, z)=0$, then $f_{h}(\lambda x, \lambda y, \lambda z)=0$.

So it makes sense to think of $Z\left(f_{h}\right) \subset \mathbb{P}^{2}$.
(ii) $f_{h}(x, y, 1)=0$ exactly when $f(x, y)=0$.

Projective Space and Bézout's Theorem

Homogenization
A polynomial is homogeneous if all its terms have the same degree. We can homogenize any polynomial $f(x, y)$.

Example

$$
\begin{aligned}
& f=x^{3}-2 x y+y-5 \\
& f_{h}=x^{3}-2 x y z+y z^{2}-5 z^{3}
\end{aligned}
$$

This is useful because:
(i) If $f_{h}(x, y, z)=0$, then $f_{h}(\lambda x, \lambda y, \lambda z)=0$.

So it makes sense to think of $Z\left(f_{h}\right) \subset \mathbb{P}^{2}$.
(ii) $f_{h}(x, y, 1)=0$ exactly when $f(x, y)=0$.

So $Z(f)$ is the intersection of $Z\left(f_{h}\right)$ with $\mathbb{R}^{2} \subset \mathbb{P}^{2}$.

Projective Space and Bézout's Theorem

Homogenization

Figure: $f=x^{2}+y^{2}-1, f_{h}=x^{2}+y^{2}-z^{2}$

Projective Space and Bézout's Theorem

Homogenization

Figure: $f=y-x^{3}, \quad f_{h}=y z^{2}-x^{3}$

Projective Space and Bézout's Theorem

Homogenization
Line and conic that intersect "at infinity": © Original

$$
\begin{aligned}
y=x^{2}-1 & \left(f_{h}=y z-x^{2}+z^{2}\right) \\
x=0 & \left(g_{h}=x\right)
\end{aligned}
$$

Projective Space and Bézout's Theorem

Homogenization

There are two points in $Z\left(y z-x^{2}+z^{2}\right) \cap Z(x)$:

Projective Space and Bézout's Theorem

Homogenization

There are two points in $Z\left(y z-x^{2}+z^{2}\right) \cap Z(x)$:

- $\ln \mathbb{R}^{2} \subset \mathbb{P}^{2}:[0:-1: 1]$,

Projective Space and Bézout's Theorem

Homogenization

There are two points in $Z\left(y z-x^{2}+z^{2}\right) \cap Z(x)$:

- In $\mathbb{R}^{2} \subset \mathbb{P}^{2}:[0:-1: 1]$,
- At "infinity": [0:1:0].

Projective Space and Bézout's Theorem

Homogenization
Lines that intersect in \mathbb{R}^{2} :

$$
\begin{aligned}
x+2 y+2=0 & \left(f_{h}=x+2 y+2 z\right) \\
-2 x+y-1=0 & \left(g_{h}=-2 x+y-z\right)
\end{aligned}
$$

Projective Space and Bézout's Theorem

Homogenization
Lines that intersect "at infinity":

$$
\begin{aligned}
x=3 & \left(f_{h}=x-3 z\right) \\
x=-3 & \left(g_{h}=x+3 z\right)
\end{aligned}
$$

Projective Space and Bézout's Theorem

Homogenization
We were using $\mathbb{R P}^{2}$, but of course we need $\mathbb{C P}^{2}$:

$$
\begin{array}{ll}
x^{2}+y^{2}=1 & \left(f_{h}=x^{2}+y^{2}-z^{2}\right) \\
x^{2}+y^{2}=4 & \left(g_{h}=x^{2}+y^{2}-4 z^{2}\right)
\end{array}
$$

Projective Space and Bézout's Theorem

Bézout's Theorem

Working in \mathbb{P}^{n} over \mathbb{C} gets us the following:

Projective Space and Bézout's Theorem

Bézout's Theorem

Working in \mathbb{P}^{n} over \mathbb{C} gets us the following:
A variety $X \subset \mathbb{P}^{n}$ has a degree.

Projective Space and Bézout's Theorem

Bézout's Theorem

Working in \mathbb{P}^{n} over \mathbb{C} gets us the following:
A variety $X \subset \mathbb{P}^{n}$ has a degree .

- The hypersurface $Z(f)$ has degree $\operatorname{deg} f$.

Projective Space and Bézout's Theorem

Bézout's Theorem

Working in \mathbb{P}^{n} over \mathbb{C} gets us the following:
A variety $X \subset \mathbb{P}^{n}$ has a degree.

- The hypersurface $Z(f)$ has degree $\operatorname{deg} f$.
- If X_{1}, \ldots, X_{n} are hypersurfaces with 0-dimensional intersection,

$$
\# \bigcap X_{i}=\prod \operatorname{deg} X_{i}
$$

This is Bézout's Theorem.

Section 2

Classical Example: Plane Conics

Classical Example: Plane Conics

Moduli space of conics

A plane conic is a curve in \mathbb{P}^{2} defined by a degree 2 polynomial:

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z=0
$$

Classical Example: Plane Conics

Moduli space of conics

A plane conic is a curve in \mathbb{P}^{2} defined by a degree 2 polynomial:

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z=0
$$

We can regard this as a point $[A: B: C: D: E: F] \in \mathbb{P}^{5}$.
\mathbb{P}^{5} is a moduli space of plane conics.

Classical Example: Plane Conics

Moduli space of conics

Example

Conic: $x y=1$. Homogenize: $x y-z^{2}=0$.

Classical Example: Plane Conics

Moduli space of conics

Example
Conic: $x y=1$. Homogenize: $x y-z^{2}=0$.
This lives at the point $[0: 0:-1: 1: 0: 0]$.

Example

Conic: $x y=0$. This is a pair of lines.

Classical Example: Plane Conics

Moduli space of conics

Example
Conic: $x y=1$. Homogenize: $x y-z^{2}=0$.
This lives at the point $[0: 0:-1: 1: 0: 0]$.

Example

Conic: $x y=0$. This is a pair of lines.
This lives at the point $[0: 0: 0: 1: 0: 0]$.

Classical Example: Plane Conics

Moduli space of conics

A conic is singular if it is a pair of lines $(x y=0)$.

This happens exactly when:

$$
\left|\begin{array}{ccc}
2 A & D & E \\
D & 2 B & F \\
E & F & 2 C
\end{array}\right|=0 .^{*}
$$

This cuts out a degree 3 hypersurface $\Delta \subset \mathbb{P}^{5}$.

[^0]
Classical Example: Plane Conics

Moduli space of conics

A conic is singular if it is a pair of lines $(x y=0)$.

This happens exactly when:

$$
\left|\begin{array}{ccc}
2 A & D & E \\
D & 2 B & F \\
E & F & 2 C
\end{array}\right|=0 .^{*}
$$

This cuts out a degree 3 hypersurface $\Delta \subset \mathbb{P}^{5}$.
\mathbb{P}^{5} is a compactification of the moduli space of smooth conics, Δ is the boundary of the moduli space.

[^1]
Classical Example: Plane Conics

Moduli space of conics

Inside of Δ live the double lines:

$$
(\alpha x+\beta y+\gamma z)^{2}=0
$$

Classical Example: Plane Conics

Moduli space of conics

Inside of Δ live the double lines:

$$
(\alpha x+\beta y+\gamma z)^{2}=0
$$

The locus $\Delta_{\text {double }}$ is exactly the singular locus of Δ.

Classical Example: Plane Conics

Moduli space of conics

Inside of Δ live the double lines:

$$
(\alpha x+\beta y+\gamma z)^{2}=0
$$

The locus $\Delta_{\text {double }}$ is exactly the singular locus of Δ.
$\Delta_{\text {double }}$ is the image of the Veronese embedding:

$$
\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}:[\alpha: \beta: \gamma] \mapsto\left[\alpha^{2}: \beta^{2}: \gamma^{2}: 2 \alpha \beta: 2 \alpha \gamma: 2 \beta \gamma\right]
$$

Classical Example: Plane Conics

Passing through points and tangent to lines

Fix $P \in \mathbb{P}^{2}$. Let $Z_{P}=\{$ conics passing through $P\} \subset \mathbb{P}^{5}$.

Classical Example: Plane Conics

Passing through points and tangent to lines

Fix $P \in \mathbb{P}^{2}$. Let $Z_{P}=\{$ conics passing through $P\} \subset \mathbb{P}^{5}$.
This is a hyperplane in \mathbb{P}^{5} :

Write $P=\left[x_{0}: y_{0}: z_{0}\right]$. Find $[A: B: C: D: E: F]$ so that

$$
\left(x_{0}^{2}\right) A+\left(y_{0}^{2}\right) B+\left(z_{0}^{2}\right) C+\left(x_{0} y_{0}\right) D+\left(x_{0} z_{0}\right) E+\left(y_{0} z_{0}\right) F=0
$$

This is just a linear equation in A, B, C, D, E, F.

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 points $P_{1}, \ldots, P_{5} \in \mathbb{P}^{2}$.
How many conics pass through all of P_{1}, \ldots, P_{5} ?

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 points $P_{1}, \ldots, P_{5} \in \mathbb{P}^{2}$.
How many conics pass through all of P_{1}, \ldots, P_{5} ?

Generically, the hyperplanes $Z_{P_{i}}$ will intersect transversally.

$$
\# \bigcap Z_{P_{i}}=\prod \operatorname{deg} Z_{P_{i}}=1
$$

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 points $P_{1}, \ldots, P_{5} \in \mathbb{P}^{2}$.
How many conics pass through all of P_{1}, \ldots, P_{5} ?

Generically, the hyperplanes $Z_{P_{i}}$ will intersect transversally.

$$
\# \bigcap Z_{P_{i}}=\prod \operatorname{deg} Z_{P_{i}}=1
$$

If no 3 points are collinear, nothing in Δ can pass through all 5 points.

Classical Example: Plane Conics

Passing through points and tangent to lines

Fix a line $L \subset \mathbb{P}^{2}$. Let $Z_{L}=\{$ conics tangent to $L\} \subset \mathbb{P}^{5} .{ }^{\dagger}$

Classical Example: Plane Conics

Passing through points and tangent to lines

Fix a line $L \subset \mathbb{P}^{2}$. Let $Z_{L}=\{$ conics tangent to $L\} \subset \mathbb{P}^{5} .{ }^{\dagger}$
This is a degree 2 hypersurface in \mathbb{P}^{5} (next slide).

Classical Example: Plane Conics

Passing through points and tangent to lines

Fix a line $L \subset \mathbb{P}^{2}$. Let $Z_{L}=\{$ conics tangent to $L\} \subset \mathbb{P}^{5} .{ }^{\dagger}$
This is a degree 2 hypersurface in \mathbb{P}^{5} (next slide).

Since the Z_{P} 's and Z_{L} 's are all hypersurfaces in \mathbb{P}^{5}, intersecting 5 of them should give finitely many points to count.

Classical Example: Plane Conics

Passing through points and tangent to lines
Suppose L is the line $x=0$.

Classical Example: Plane Conics

Passing through points and tangent to lines
Suppose L is the line $x=0$.

Find $[A: B: C: D: E: F]$ so that the system

$$
\left\{\begin{array}{l}
x=0 \\
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z=0
\end{array}\right.
$$

has <2 solutions.

Classical Example: Plane Conics

Passing through points and tangent to lines
Suppose L is the line $x=0$.

Find $[A: B: C: D: E: F]$ so that the system

$$
\left\{\begin{array}{l}
x=0 \\
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z=0
\end{array}\right.
$$

has <2 solutions.

Look in the chart $z=1$. Set $x=0$.

$$
B y^{2}+F y+C=0
$$

Classical Example: Plane Conics

Passing through points and tangent to lines
Suppose L is the line $x=0$.

Find $[A: B: C: D: E: F]$ so that the system

$$
\left\{\begin{array}{l}
x=0 \\
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z=0
\end{array}\right.
$$

has <2 solutions.

Look in the chart $z=1$. Set $x=0$.

$$
B y^{2}+F y+C=0
$$

This has <2 solutions when its discriminant is zero:

$$
F^{2}-4 B C=0
$$

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 4 points $P_{1}, \ldots, P_{4} \in \mathbb{P}^{2}$ and a line $L \subset \mathbb{P}^{2}$.
How many conics pass through P_{1}, \ldots, P_{4} and are tangent to L ?

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 4 points $P_{1}, \ldots, P_{4} \in \mathbb{P}^{2}$ and a line $L \subset \mathbb{P}^{2}$.
How many conics pass through P_{1}, \ldots, P_{4} and are tangent to L ?
Bézout:

$$
\# Z_{P_{1}} \cap Z_{P_{2}} \cap Z_{P_{3}} \cap Z_{P_{4}} \cap Z_{L}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 2=2
$$

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 4 points $P_{1}, \ldots, P_{4} \in \mathbb{P}^{2}$ and a line $L \subset \mathbb{P}^{2}$.
How many conics pass through P_{1}, \ldots, P_{4} and are tangent to L ?
Bézout:

$$
\# Z_{P_{1}} \cap Z_{P_{2}} \cap Z_{P_{3}} \cap Z_{P_{4}} \cap Z_{L}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 2=2
$$

These will be smooth: $\bigcap Z_{P_{i}}$ will generally contain 3 singular conics, but they won't be tangent to a general line.

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 lines $L_{1}, \ldots, L_{5} \subset \mathbb{P}^{2}$.
How many conics are tangent to all of L_{1}, \ldots, L_{5} ?

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 lines $L_{1}, \ldots, L_{5} \subset \mathbb{P}^{2}$.
How many conics are tangent to all of L_{1}, \ldots, L_{5} ?
Bézout:

$$
\# \bigcap Z_{L_{i}}=\prod \operatorname{deg} Z_{L_{i}}=2^{5}=32
$$

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 lines $L_{1}, \ldots, L_{5} \subset \mathbb{P}^{2}$.
How many conics are tangent to all of L_{1}, \ldots, L_{5} ?
Bézout:

$$
\# \bigcap Z_{L_{i}}=\prod \operatorname{deg} Z_{L_{i}}=2^{5}=32
$$

This is wrong! The problem is that each $Z_{L_{i}}$ contains all of $\Delta_{\text {double }}$. Bézout doesn't apply because $\bigcap Z_{L_{i}}$ isn't finite.

Classical Example: Plane Conics

Passing through points and tangent to lines

Question

Fix 5 lines $L_{1}, \ldots, L_{5} \subset \mathbb{P}^{2}$.
How many conics are tangent to all of L_{1}, \ldots, L_{5} ?
Bézout:

$$
\# \bigcap Z_{L_{i}}=\prod \operatorname{deg} Z_{L_{i}}=2^{5}=32
$$

This is wrong! The problem is that each $Z_{L_{i}}$ contains all of $\Delta_{\text {double }}$. Bézout doesn't apply because $\bigcap Z_{L_{i}}$ isn't finite.

One fix is to blow up $\Delta_{\text {double }}$. This will separate the $Z_{L_{i}}$.

Classical Example: Plane Conics

Passing through points and tangent to lines

Blowing up \mathbb{C}^{2} at $P\left(\mathrm{Bl}_{P} \mathbb{C}^{2}\right)$.

Classical Example: Plane Conics

Passing through points and tangent to lines

Classical Example: Plane Conics

Passing through points and tangent to lines

Classical Example: Plane Conics

Passing through points and tangent to lines

Blowing up \mathbb{C}^{2} at $P\left(\mathrm{Bl}_{P} \mathbb{C}^{2}\right)$.

- $\{P\}$: the center
- $\pi^{-1}(P)$: the exceptional divisor
- $\pi^{-1}(L)$: the total transform

Classical Example: Plane Conics

Passing through points and tangent to lines

Blowing up \mathbb{C}^{2} at $P\left(\mathrm{Bl}_{P} \mathbb{C}^{2}\right)$.

- $\{P\}$: the center
- $\pi^{-1}(P)$: the exceptional divisor
- $\pi^{-1}(L)$: the total transform
- The proper transform of L is:

$$
\widetilde{L}=\overline{\pi^{-1}(L \backslash\{P\})}
$$

Classical Example: Plane Conics

Passing through points and tangent to lines

Blowing up \mathbb{C}^{2} at $P\left(\mathrm{Bl}_{P} \mathbb{C}^{2}\right)$.

- $\{P\}$: the center
- $\pi^{-1}(P)$: the exceptional divisor
- $\pi^{-1}(L)$: the total transform
- The proper transform of L is:

$$
\widetilde{L}=\overline{\pi^{-1}(L \backslash\{P\})}
$$

The general principle is to supplement the points in the center with additional information: how is L crossing P ?

Classical Example: Plane Conics

Passing through points and tangent to lines

Blowing up \mathbb{C}^{2} at $P\left(\mathrm{Bl}_{P} \mathbb{C}^{2}\right)$.

- $\{P\}$: the center
- $\pi^{-1}(P)$: the exceptional divisor
- $\pi^{-1}(L)$: the total transform
- The proper transform of L is:

$$
\widetilde{L}=\overline{\pi^{-1}(L \backslash\{P\})}
$$

The general principle is to supplement the points in the center with additional information: how is L crossing P ?
$\mathrm{Bl}_{\Delta_{\text {double }}} \mathbb{P}^{5}=$ complete conics.

Section 3

Modern Example: Maps to Projective Space

Modern Example: Maps to Projective Space

Maps to Projective Space

A Riemann surface C is a compact surface that locally looks like \mathbb{C}.

Modern Example: Maps to Projective Space

Maps to Projective Space

We want to build a moduli space Q of pairs (C, f) where

- C is a Riemann surface (of some fixed genus),
- f is a map $C \rightarrow \mathbb{P}^{n}$.

Modern Example: Maps to Projective Space

Maps to Projective Space

We want to build a moduli space Q of pairs (C, f) where

- C is a Riemann surface (of some fixed genus),
- f is a map $C \rightarrow \mathbb{P}^{n}$.

That is, points of Q exactly correspond to such pairs (C, f).

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

If s_{0}, \ldots, s_{n} are functions on C,

$$
C \rightarrow \mathbb{P}^{n}: p \mapsto\left[s_{0}(p): \cdots: s_{n}(p)\right]
$$

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

If s_{0}, \ldots, s_{n} are functions on C,

$$
C \rightarrow \mathbb{P}^{n}: p \mapsto\left[s_{0}(p): \cdots: s_{n}(p)\right]
$$

Really important technical point we will mostly ignore:

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

If s_{0}, \ldots, s_{n} are functions on C,

$$
C \rightarrow \mathbb{P}^{n}: p \mapsto\left[s_{0}(p): \cdots: s_{n}(p)\right]
$$

Really important technical point we will mostly ignore:

- The only functions on C are constant.

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

If s_{0}, \ldots, s_{n} are functions on C,

$$
C \rightarrow \mathbb{P}^{n}: p \mapsto\left[s_{0}(p): \cdots: s_{n}(p)\right]
$$

Really important technical point we will mostly ignore:

- The only functions on C are constant.
- We need to use global sections of line bundles instead.

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

If s_{0}, \ldots, s_{n} are functions on C,

$$
C \rightarrow \mathbb{P}^{n}: p \mapsto\left[s_{0}(p): \cdots: s_{n}(p)\right]
$$

Really important technical point we will mostly ignore:

- The only functions on C are constant.
- We need to use global sections of line bundles instead.
- Line bundles have a degree.

Modern Example: Maps to Projective Space

Maps to Projective Space

How can we get a map $C \rightarrow \mathbb{P}^{n}$?

If s_{0}, \ldots, s_{n} are functions on C,

$$
C \rightarrow \mathbb{P}^{n}: p \mapsto\left[s_{0}(p): \cdots: s_{n}(p)\right]
$$

Really important technical point we will mostly ignore:

- The only functions on C are constant.
- We need to use global sections of line bundles instead.
- Line bundles have a degree.
- If $\operatorname{deg} \mathcal{L}=d$, global sections vanish at d points (multiplicity).

Modern Example: Maps to Projective Space

Maps to Projective Space

If $s_{0}(p)=\cdots=s_{n}(p)=0$, our map is not defined at p.

Modern Example: Maps to Projective Space

Maps to Projective Space

If $s_{0}(p)=\cdots=s_{n}(p)=0$, our map is not defined at p.

A rational map is defined everywhere except finitely many points.

Modern Example: Maps to Projective Space

Maps to Projective Space

If $s_{0}(p)=\cdots=s_{n}(p)=0$, our map is not defined at p.
A rational map is defined everywhere except finitely many points.
Degree of our rational map $=$ degree of the line bundle the s_{i} come from.

Modern Example: Maps to Projective Space

The moduli space of maps

Using fancy but standard techniques, We can build a compact moduli space Q :

Modern Example: Maps to Projective Space

The moduli space of maps

Using fancy but standard techniques, We can build a compact moduli space Q :

The following are in $1-1$ correspondence:

Modern Example: Maps to Projective Space

The moduli space of maps

Using fancy but standard techniques, We can build a compact moduli space Q :

The following are in $1-1$ correspondence:

- Points of Q,

Modern Example: Maps to Projective Space

The moduli space of maps

Using fancy but standard techniques, We can build a compact moduli space Q :

The following are in $1-1$ correspondence:

- Points of Q,
- Pairs (C, f) where f is a degree d rational map $C \rightarrow \mathbb{P}^{n}$.

Modern Example: Maps to Projective Space

The moduli space of maps

Using fancy but standard techniques, We can build a compact moduli space Q :

The following are in $1-1$ correspondence:

- Points of Q,
- Pairs (C, f) where f is a degree d rational map $C \rightarrow \mathbb{P}^{n}$.

The boundary consists of (C, f) where f is not defined everywhere.

Modern Example: Maps to Projective Space

The moduli space of maps

To recap:

Modern Example: Maps to Projective Space

The moduli space of maps

To recap:

We built a moduli space of "plane conics".
It was compact, at the cost of including singular conics.

Modern Example: Maps to Projective Space

The moduli space of maps

To recap:

We built a moduli space of "plane conics".
It was compact, at the cost of including singular conics.

We can build a moduli space of "maps" $C \rightarrow \mathbb{P}^{n}$.
It is compact, at the cost of including rational maps.

Modern Example: Maps to Projective Space

The Boundary
Let's investigate the boundary of Q.

Modern Example: Maps to Projective Space

The Boundary
Let's investigate the boundary of Q.

The simultaneous order of vanishing of s_{0}, \ldots, s_{n} :

Modern Example: Maps to Projective Space

The Boundary
Let's investigate the boundary of Q.

The simultaneous order of vanishing of s_{0}, \ldots, s_{n} :
For each $p \in C$, add the minimum of

- The order of vanishing of s_{0} at p,
- The order of vanishing of s_{1} at p,
- ...
- The order of vanishing of s_{n} at p.

Modern Example: Maps to Projective Space

The Boundary

Let's investigate the boundary of Q.

The simultaneous order of vanishing of s_{0}, \ldots, s_{n} :
For each $p \in C$, add the minimum of

- The order of vanishing of s_{0} at p,
- The order of vanishing of s_{1} at p,
- ...
- The order of vanishing of s_{n} at p.

Define $Z_{k} \subset Q$ to be
$\left\{\left(C,\left[s_{0}: \cdots: s_{n}\right]\right) \mid s_{i}\right.$ vanish simultaneously to order at least $\left.k\right\}$.

Modern Example: Maps to Projective Space

The Boundary

To recap:

Modern Example: Maps to Projective Space

The Boundary

To recap:

For plane conics, the boundary looked like:

$$
\Delta_{\text {double }} \subset \Delta \subset \mathbb{P}^{5}
$$

Modern Example: Maps to Projective Space

The Boundary

To recap:

For plane conics, the boundary looked like:

$$
\Delta_{\text {double }} \subset \Delta \subset \mathbb{P}^{5}
$$

Here the boundary looks like:

$$
Z_{d} \subset Z_{d-1} \subset \cdots \subset Z_{1} \subset Q
$$

Modern Example: Maps to Projective Space

Blowing Up

Ideal boundary for intersection theory (\star) :

Modern Example: Maps to Projective Space

Blowing Up

Ideal boundary for intersection theory (\star):

- Made of some codimension 1 pieces,

Modern Example: Maps to Projective Space

 Blowing UpIdeal boundary for intersection theory (\star):

- Made of some codimension 1 pieces,
- Each piece is non-singular,

Modern Example: Maps to Projective Space

 Blowing UpIdeal boundary for intersection theory (\star):

- Made of some codimension 1 pieces,
- Each piece is non-singular,
- The pieces are not tangent to one another.

In the plane conic example, Δ was singular.

Modern Example: Maps to Projective Space

Blowing Up

Ideal boundary for intersection theory (\star):

- Made of some codimension 1 pieces,
- Each piece is non-singular,
- The pieces are not tangent to one another.

In the plane conic example, Δ was singular.
When we blow up \mathbb{P}^{5} along $\Delta_{\text {double }}$, the new boundary satisfies (\star).

Modern Example: Maps to Projective Space

Blowing Up

The boundary Z_{1} of Q is singular and codimension $n-1$.

Modern Example: Maps to Projective Space

Blowing Up

The boundary Z_{1} of Q is singular and codimension $n-1$. How do we get it to satisfy (\star) ?

Modern Example: Maps to Projective Space

Blowing Up

The boundary Z_{1} of Q is singular and codimension $n-1$. How do we get it to satisfy (\star) ?

Do the following process:

Modern Example: Maps to Projective Space

Blowing Up

The boundary Z_{1} of Q is singular and codimension $n-1$. How do we get it to satisfy (\star) ?

Do the following process:

- Blow up Q along Z_{d},

Modern Example: Maps to Projective Space Blowing Up

The boundary Z_{1} of Q is singular and codimension $n-1$. How do we get it to satisfy (\star) ?

Do the following process:

- Blow up Q along Z_{d},
- Blow up the result along (the proper transform of) Z_{d-1},
- ...
- Blow up the result along (the proper transform of) Z_{2},
- Blow up the result along (the proper transform of) Z_{1}.

[^0]: ${ }^{*} 4 A B C+D E F-A F^{2}-B E^{2}-C D^{2}=0$

[^1]: * $4 A B C+D E F-A F^{2}-B E^{2}-C D^{2}=0$

