Visualizing piecewise-flat manifolds

Thomas Maienschein

November 22, 2010

Thomas Maienschein ()

4 E b November 22, 2010 1 / 31

э

We will call a convex *n*-polytope in \mathbb{R}^n a **facet**. The polytopes forming the boundary of a facet will be called **ridges**. If *R* is a ridge of a facet *F*, we will write R < F.

3

<日

<</p>

We will call a convex *n*-polytope in \mathbb{R}^n a **facet**. The polytopes forming the boundary of a facet will be called **ridges**. If *R* is a ridge of a facet *F*, we will write R < F.

Our data will be

- A finite collection of facets,
- A rule for gluing facets along ridges.

The gluing is specified in the following way:

Background

Definitions

To each pair (F, R) with R < F, there is

- A pair (F', R') = *(F, R) with R' < F'
- An isometry $T = \mathcal{T}(F, R)$ of \mathbb{R}^n

4 E b

Background

Definitions

To each pair (F, R) with R < F, there is

- A pair (F', R') = *(F, R) with R' < F'
- An isometry $T = \mathcal{T}(F, R)$ of \mathbb{R}^n

The following should be an equivalence relation: $(F, p) \sim (F', p')$ if

- $p \in R < F$ and $p' \in R' < F'$, and *(F,R) = (F',R')
- $\mathcal{T}(F,R)p = p'$

E 6 4 E 6

Background

Definitions

To each pair (F, R) with R < F, there is

- A pair (F', R') = *(F, R) with R' < F'
- An isometry $T = \mathcal{T}(F, R)$ of \mathbb{R}^n

The following should be an equivalence relation: $(F, p) \sim (F', p')$ if

- $p \in R < F$ and $p' \in R' < F'$, and *(F, R) = (F', R')
- $\mathcal{T}(F,R)p = p'$

The space $X = (disjoint union of facets) / \sim should be a manifold.$

Background Definitions

If *(F, R) = (F', R'), denote the facet F' by $\mathcal{F}(F, R)$. We will identify ridges R < F and R' < F' if *(F, R) = (F', R').

イロト 不得 トイヨト イヨト 二日

Background Definitions

If *(F, R) = (F', R'), denote the facet F' by $\mathcal{F}(F, R)$. We will identify ridges R < F and R' < F' if *(F, R) = (F', R').

Points are pairs (F, p) with $p \in F$, but we may just refer to p if F is understood from context. We will say p is "in the coordinates of F".

(人間) トイヨト イヨト ニヨ

Background Definitions

If *(F, R) = (F', R'), denote the facet F' by $\mathcal{F}(F, R)$. We will identify ridges R < F and R' < F' if *(F, R) = (F', R').

Points are pairs (F, p) with $p \in F$, but we may just refer to p if F is understood from context. We will say p is "in the coordinates of F".

We will call points on the boundary of a ridge **warped points**. $X \setminus \{ \text{ warped points } \}$ is a flat Riemannian manifold. This gives a notion of geodesics and an exponential map.

- 小田 ト イヨト 一日

Example on an embedded surface

Figure: A view from the embedding.

э

ヨト イヨト

Given $v \in T_p F$, we can compute $\exp_p(v)$ in the following way.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given $v \in T_pF$, we can compute $\exp_p(v)$ in the following way. Let q = p + v.

Figure: Since $q \notin F$, apply T(F, R) to p and q.

Figure: Since $q_1 \notin F_1$, apply $T(F_1, R_1)$ to p_1 and q_1 .

< 円

Figure: Since $q_2 \in F_2$, stop; $\exp(v) = (F_2, q_2)$.

э

< 1[™] >

Algorithm

Let $v \in T_p F$. To find $\exp(v)$, let q = p + v, and call the following algorithm:

イロト 不得 トイヨト イヨト 二日

Algorithm

Let $v \in T_p F$. To find $\exp(v)$, let q = p + v, and call the following algorithm:

Algorithm

```
\exp(F, p, q) \{ \\ if(q \in F) \{ return(F, q); \} \\ else \{ \\ R = Ridge through which the line segment pq exits F; \\ F' = \mathcal{F}(F, R); \\ T = \mathcal{T}(F, R); \\ return \exp(F', Tp, Tq); \\ \}
```

- 3

Some useful remarks

We saw that for $v \in T_p F$, $\exp_p(v) = T(p + v)$ for some isometry T. If we trace the path $\exp_p(tv)$ as t goes from 0 to 1, it would pass through some sequence of facets and ridges. This sequence determines the transformation T.

Some useful remarks

We saw that for $v \in T_p F$, $\exp_p(v) = T(p + v)$ for some isometry T. If we trace the path $\exp_p(tv)$ as t goes from 0 to 1, it would pass through some sequence of facets and ridges. This sequence determines the transformation T.

We can "parallel transport" vectors along $\exp_p(tv)$ from p to $\exp_p(v)$: If $\exp_p(v) = T(p + v)$, then for $w \in T_pF$, define

$$P_{v}(w) = T(p+w) - T(p) = T(w)$$

(人間) トイヨト イヨト ニヨ

Some useful remarks

We saw that for $v \in T_p F$, $\exp_p(v) = T(p + v)$ for some isometry T. If we trace the path $\exp_p(tv)$ as t goes from 0 to 1, it would pass through some sequence of facets and ridges. This sequence determines the transformation T.

We can "parallel transport" vectors along $\exp_p(tv)$ from p to $\exp_p(v)$: If $\exp_p(v) = T(p + v)$, then for $w \in T_pF$, define

$$P_v(w) = T(p+w) - T(p) = T(w)$$

Now we can move at a consistent velocity in our space. If $w \in T_p F$ is the velocity, and Δt seconds have passed,

- Set the new position to $\exp_p(w \cdot \Delta t)$
- Set the new velocity to $P_{w \cdot \Delta t}(w)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Passing through warped points?

How does the algorithm work in the following case?

Passing through warped points?

How does the algorithm work in the following case?

We usually say that v is not in the domain of exp.

Passing through warped points?

An alternative (in 2-dimensions) is the "straightest geodesic".

The path is continued in such a way that

(sum of red angles) = (sum of black angles)

This can be computed by "walking" around the vertex.

Thomas Maienschein ()

Visualizing piecewise-flat manifolds

First step to visualization

Now we can figure out what we would "see" from a position p. Let's see what kind of phenomena we can expect to occur.

э

▶ < ∃ >

First step to visualization

Figure: $(\kappa > 0)$ I see two copies of q from p.

→ ∃ →

э

14 / 31

< 47 ▶

First step to visualization

Figure: ($\kappa < 0$) I cannot see q from p.

э

イロト イポト イヨト イヨト

What are we trying to do?

Fix a facet F_0 and a point $p \in F_0$. We will call T_pF_0 the **visual field** for an observer at p. If the observer looks in a direction and distance $v \in T_pF_0$, what (s)he sees is whatever is at the point $\exp(v)$.

What are we trying to do?

Fix a facet F_0 and a point $p \in F_0$. We will call T_pF_0 the **visual field** for an observer at p. If the observer looks in a direction and distance $v \in T_pF_0$, what (s)he sees is whatever is at the point $\exp(v)$.

So, we want to identify $T_p F_0 \simeq \mathbb{R}^n$ and "populate" the visual field by putting at v whatever is in the space at $\exp(v)$. We can't do this point-by-point, but we will make some observations allowing us to do this efficiently.

くぼう くほう くほう しほ

Observation 1

For v in the domain of exp, consider the path $\exp(tv)$ for $t \in [0, 1]$. The path passes through some sequence of facets and ridges.

Figure: Here, the sequence is $(F_0, R_0, F_1, R_1, F_2)$.

Observation 1

For v in the domain of exp, consider the path $\exp(tv)$ for $t \in [0, 1]$. The path passes through some sequence of facets and ridges.

Figure: Here, the sequence is $(F_0, R_0, F_1, R_1, F_2)$.

All v in the domain of exp have such a sequence S(v). The domain of exp can be partitioned into sets $\mathcal{D}(S) = \{v | S(v) = S\}$.

Observation 2

On each of the sets $\mathcal{D}(S)$, exp has a simple form: For $S = (F_0, R_0, \dots, F_k, R_k, F)$ and $v \in \mathcal{D}(S)$,

$$\exp(\mathbf{v}) = \left(\mathcal{T}(F_k, R_k) \circ \cdots \circ \mathcal{T}(F_0, R_0)\right)(\mathbf{p} + \mathbf{v}).$$

3

A B M A B M

< 4 ₽ >

Observation 2

On each of the sets $\mathcal{D}(S)$, exp has a simple form: For $S = (F_0, R_0, \dots, F_k, R_k, F)$ and $v \in \mathcal{D}(S)$, $\exp(v) = (\mathcal{T}(F_k, R_k) \circ \dots \circ \mathcal{T}(F_0, R_0)) (p + v).$

Let $\mathcal{E}(S) = \exp(\mathcal{D}(S)) \subset F$. We can draw the whole chunk $\mathcal{D}(S)$ of the visual field at once, by applying the inverse of the above isometry to $\mathcal{E}(S)$ (and any objects within).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Observation 3

The collection of sequences forms a tree, Γ :

- The root of the tree is (F_0) .
- The children of (..., F) are the sequences $(..., F, R_i, F_i)$, where $R_i < F$ and $F_i = \mathcal{F}(F, R_i)$.

3

A B M A B M

< (T) >

Observation 3

The collection of sequences forms a tree, Γ :

- The root of the tree is (F_0) .
- The children of (..., F) are the sequences $(..., F, R_i, F_i)$, where $R_i < F$ and $F_i = \mathcal{F}(F, R_i)$.

If we can find $\mathcal{E}(S')$ for children S' of S, where $\mathcal{E}(S)$ is known, then by traversing Γ we can draw the entire visual field.

Frustums

Definition

The fourth observation is that the sets $\mathcal{E}(S)$ have a particularly nice form. To state the observation, we make the following definition:

3

< □ > < 同 > < 回 > < 回 > < 回 >

Frustums

Definition

The fourth observation is that the sets $\mathcal{E}(S)$ have a particularly nice form. To state the observation, we make the following definition:

Definition (Frustum)

A **frustum** is a subset $V \subset \mathbb{R}^n$ such that there exists

- a source point $p \in \mathbb{R}^n$ and
- a convex (n-1)-polytope $Q \not\supseteq p$,

such that $V = \{p + k(q - p) | q \in Q, k \ge 0\}.$

医静脉 医黄疸 医黄疸 医

Frustums

Definition

The fourth observation is that the sets $\mathcal{E}(S)$ have a particularly nice form. To state the observation, we make the following definition:

Definition (Frustum)

A **frustum** is a subset $V \subset \mathbb{R}^n$ such that there exists

• a source point $p \in \mathbb{R}^n$ and

• a convex
$$(n-1)$$
-polytope $Q \not\ni p$,

such that $V = \{p + k(q - p) | q \in Q, k \ge 0\}$.

It will be convenient to consider \emptyset and \mathbb{R}^n to be a frustums (the **empty frustum** and **full frustum**, respectively).

Examples

Figure: Examples of frustums.

æ

イロト イヨト イヨト イヨト

Creation

A frustum can be created from a point and a ridge.

3

Transformation

A frustum can be transformed along a ridge.

< 47 ▶

э

Intersection

Frustums can be intersected to get a new frustum (which may be empty).

< 行

э

Intersection

A frustum V with source point p intersects a ridge R **positively** if $\exists v \in V \cap R$ such that $(v - p) \cdot n > 0$, where n is the outward pointing normal to R.

25 / 31

Observation 4

Claim: For every sequence S = (..., F), there is a frustum $\mathcal{V}(S)$ such that $\mathcal{E}(S) = \mathcal{V}(S) \cap F$.

(日)

3

Claim: For every sequence S = (..., F), there is a frustum $\mathcal{V}(S)$ such that $\mathcal{E}(S) = \mathcal{V}(S) \cap F$.

To prove this (and also complete the algorithm to draw the visual field)

- We show this is true for the root of Γ
- We compute $\mathcal{V}(S')$, where S' is a child of S and $\mathcal{V}(S)$ is known.

Claim: For every sequence S = (..., F), there is a frustum $\mathcal{V}(S)$ such that $\mathcal{E}(S) = \mathcal{V}(S) \cap F$.

To prove this (and also complete the algorithm to draw the visual field)

- We show this is true for the root of Γ
- We compute $\mathcal{V}(S')$, where S' is a child of S and $\mathcal{V}(S)$ is known.

The claim is trivial for the root (F_0) of Γ , since $\mathcal{E}(F_0) = \mathbb{R}^n \cap F_0$. For the inductive step, we will do an example.

- 御下 - 戸下 - 戸下 - 戸

The inductive step

Data for sequence S = (..., F)

The frustum intersects ridges α and β positively.

The inductive step

Data for child node $S' = (\ldots, F, \alpha, A)$

$\mathcal{V}(S') = (\mathrm{red\ frustum}) \cap (\mathrm{black\ frustum})$

The inductive step

Data for child node $S'' = (\ldots, F, \beta, B)$

$\mathcal{V}(S'') = (\mathrm{red\ frustum}) \cap (\mathrm{black\ frustum})$

The algorithm

Let S = (..., F) be a sequence for which $\mathcal{V}(S)$ is known. Let S' = (..., F, R, F') be a child of S. The following returns $\mathcal{V}(S')$:

3

The algorithm

Let S = (..., F) be a sequence for which $\mathcal{V}(S)$ is known. Let S' = (..., F, R, F') be a child of S. The following returns $\mathcal{V}(S')$:

Algorithm if($\mathcal{V}(S)$ intersects R positively){ $p = \text{Source point of } \mathcal{V}(S);$ $V_R = \text{Frustum generated from } p \text{ and } R;$ $\operatorname{return} \mathcal{T}(F, R)(V_R \cap \mathcal{V}(S));$ } else{ $\operatorname{return} \emptyset;$ }

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ