Visualizing piecewise-flat manifolds

Thomas Maienschein

November 22, 2010

Background

Definitions

We will call a convex n-polytope in \mathbb{R}^{n} a facet.
The polytopes forming the boundary of a facet will be called ridges. If R is a ridge of a facet F, we will write $R<F$.

Background

Definitions

We will call a convex n-polytope in \mathbb{R}^{n} a facet.
The polytopes forming the boundary of a facet will be called ridges.
If R is a ridge of a facet F, we will write $R<F$.

Our data will be

- A finite collection of facets,
- A rule for gluing facets along ridges.

The gluing is specified in the following way:

Background

Definitions

To each pair (F, R) with $R<F$, there is

- A pair $\left(F^{\prime}, R^{\prime}\right)=*(F, R)$ with $R^{\prime}<F^{\prime}$
- An isometry $T=\mathcal{T}(F, R)$ of \mathbb{R}^{n}

Background

Definitions

To each pair (F, R) with $R<F$, there is

- A pair $\left(F^{\prime}, R^{\prime}\right)=*(F, R)$ with $R^{\prime}<F^{\prime}$
- An isometry $T=\mathcal{T}(F, R)$ of \mathbb{R}^{n}

The following should be an equivalence relation:
$(F, p) \sim\left(F^{\prime}, p^{\prime}\right)$ if

- $p \in R<F$ and $p^{\prime} \in R^{\prime}<F^{\prime}$, and $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$
- $\mathcal{T}(F, R) p=p^{\prime}$

Background

Definitions

To each pair (F, R) with $R<F$, there is

- A pair $\left(F^{\prime}, R^{\prime}\right)=*(F, R)$ with $R^{\prime}<F^{\prime}$
- An isometry $T=\mathcal{T}(F, R)$ of \mathbb{R}^{n}

The following should be an equivalence relation:
$(F, p) \sim\left(F^{\prime}, p^{\prime}\right)$ if

- $p \in R<F$ and $p^{\prime} \in R^{\prime}<F^{\prime}$, and $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$
- $\mathcal{T}(F, R) p=p^{\prime}$

The space $X=$ (disjoint union of facets) $/ \sim$ should be a manifold.

Background

Definitions

If $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$, denote the facet F^{\prime} by $\mathcal{F}(F, R)$. We will identify ridges $R<F$ and $R^{\prime}<F^{\prime}$ if $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$.

Background

Definitions

If $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$, denote the facet F^{\prime} by $\mathcal{F}(F, R)$. We will identify ridges $R<F$ and $R^{\prime}<F^{\prime}$ if $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$.

Points are pairs (F, p) with $p \in F$, but we may just refer to p if F is understood from context. We will say p is "in the coordinates of F ".

Background

Definitions

If $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$, denote the facet F^{\prime} by $\mathcal{F}(F, R)$.
We will identify ridges $R<F$ and $R^{\prime}<F^{\prime}$ if $*(F, R)=\left(F^{\prime}, R^{\prime}\right)$.

Points are pairs (F, p) with $p \in F$,
but we may just refer to p if F is understood from context.
We will say p is "in the coordinates of F ".

We will call points on the boundary of a ridge warped points. $X \backslash\{$ warped points $\}$ is a flat Riemannian manifold.
This gives a notion of geodesics and an exponential map.

Geodesics

Example on an embedded surface

Figure: A view from the embedding.

Geodesics

Example: Step 1

Given $v \in T_{p} F$, we can compute $\exp _{p}(v)$ in the following way.

Geodesics

Example: Step 1

Given $v \in T_{p} F$, we can compute $\exp _{p}(v)$ in the following way. Let $q=p+v$.

Figure: Since $q \notin F$, apply $T(F, R)$ to p and q.

Geodesics

Example: Step 2

Figure: Since $q_{1} \notin F_{1}$, apply $T\left(F_{1}, R_{1}\right)$ to p_{1} and q_{1}.

Geodesics

Example: Step 3

Figure: Since $q_{2} \in F_{2}$, stop; $\exp (v)=\left(F_{2}, q_{2}\right)$.

Geodesics

Algorithm

Let $v \in T_{p} F$.
To find $\exp (v)$, let $q=p+v$, and call the following algorithm:

Geodesics

Algorithm

Let $v \in T_{p} F$.
To find $\exp (v)$, let $q=p+v$, and call the following algorithm:

Algorithm

```
exp(F,p,q){
    if(q\inF){ return(F,q); }
```

 else\{
 \(R=\) Ridge through which the line segment \(p q\) exits \(F\);
 \(F^{\prime}=\mathcal{F}(F, R)\);
 \(T=\mathcal{T}(F, R)\);
 return \(\exp \left(F^{\prime}, T p, T q\right)\);
 \}
 \}

Geodesics

Some useful remarks

We saw that for $v \in T_{p} F, \exp _{p}(v)=T(p+v)$ for some isometry T. If we trace the path $\exp _{p}(t v)$ as t goes from 0 to 1 , it would pass through some sequence of facets and ridges. This sequence determines the transformation T.

Geodesics

Some useful remarks

We saw that for $v \in T_{p} F, \exp _{p}(v)=T(p+v)$ for some isometry T. If we trace the path $\exp _{p}(t v)$ as t goes from 0 to 1 , it would pass through some sequence of facets and ridges. This sequence determines the transformation T.

We can "parallel transport" vectors along $\exp _{p}(t v)$ from p to $\exp _{p}(v)$: If $\exp _{p}(v)=T(p+v)$, then for $w \in T_{p} F$, define

$$
P_{v}(w)=T(p+w)-T(p)=T(w)
$$

Geodesics

Some useful remarks

We saw that for $v \in T_{p} F, \exp _{p}(v)=T(p+v)$ for some isometry T. If we trace the path $\exp _{p}(t v)$ as t goes from 0 to 1 , it would pass through some sequence of facets and ridges.
This sequence determines the transformation T.

We can "parallel transport" vectors along $\exp _{p}(t v)$ from p to $\exp _{p}(v)$: If $\exp _{p}(v)=T(p+v)$, then for $w \in T_{p} F$, define

$$
P_{v}(w)=T(p+w)-T(p)=T(w)
$$

Now we can move at a consistent velocity in our space.
If $w \in T_{p} F$ is the velocity, and Δt seconds have passed,

- Set the new position to $\exp _{p}(w \cdot \Delta t)$
- Set the new velocity to $P_{w \cdot \Delta t}(w)$.

Geodesics

Passing through warped points?

How does the algorithm work in the following case?

Geodesics

Passing through warped points?

How does the algorithm work in the following case?

We usually say that v is not in the domain of exp.

Geodesics

Passing through warped points?
An alternative (in 2-dimensions) is the "straightest geodesic".

The path is continued in such a way that

$$
(\text { sum of red angles })=(\text { sum of black angles })
$$

This can be computed by "walking" around the vertex.

Geodesics

First step to visualization

Now we can figure out what we would "see" from a position p. Let's see what kind of phenomena we can expect to occur.

Geodesics

First step to visualization

Figure: $(\kappa>0)$ I see two copies of q from p.

Geodesics

First step to visualization

Figure: $(\kappa<0)$ I cannot see q from p.

Visualization

What are we trying to do?

Fix a facet F_{0} and a point $p \in F_{0}$.
We will call $T_{p} F_{0}$ the visual field for an observer at p. If the observer looks in a direction and distance $v \in T_{p} F_{0}$, what (s)he sees is whatever is at the point $\exp (v)$.

Visualization

What are we trying to do?

Fix a facet F_{0} and a point $p \in F_{0}$.
We will call $T_{p} F_{0}$ the visual field for an observer at p. If the observer looks in a direction and distance $v \in T_{p} F_{0}$, what (s)he sees is whatever is at the point $\exp (v)$.

So, we want to identify $T_{p} F_{0} \simeq \mathbb{R}^{n}$ and "populate" the visual field by putting at v whatever is in the space at $\exp (v)$.
We can't do this point-by-point, but we will make some observations allowing us to do this efficiently.

Visualization

Observation 1

For v in the domain of \exp, consider the path $\exp (t v)$ for $t \in[0,1]$. The path passes through some sequence of facets and ridges.

Figure: Here, the sequence is $\left(F_{0}, R_{0}, F_{1}, R_{1}, F_{2}\right)$.

Visualization

Observation 1

For v in the domain of \exp, consider the path $\exp (t v)$ for $t \in[0,1]$. The path passes through some sequence of facets and ridges.

Figure: Here, the sequence is $\left(F_{0}, R_{0}, F_{1}, R_{1}, F_{2}\right)$.

All v in the domain of \exp have such a sequence $\mathcal{S}(v)$.
The domain of exp can be partitioned into sets $\mathcal{D}(S)=\{v \mid \mathcal{S}(v)=S\}$.

Visualization

Observation 2

On each of the sets $\mathcal{D}(S)$, exp has a simple form:
For $S=\left(F_{0}, R_{0}, \ldots, F_{k}, R_{k}, F\right)$ and $v \in \mathcal{D}(S)$,

$$
\exp (v)=\left(\mathcal{T}\left(F_{k}, R_{k}\right) \circ \cdots \circ \mathcal{T}\left(F_{0}, R_{0}\right)\right)(p+v)
$$

Visualization

Observation 2

On each of the sets $\mathcal{D}(S)$, exp has a simple form:
For $S=\left(F_{0}, R_{0}, \ldots, F_{k}, R_{k}, F\right)$ and $v \in \mathcal{D}(S)$,

$$
\exp (v)=\left(\mathcal{T}\left(F_{k}, R_{k}\right) \circ \cdots \circ \mathcal{T}\left(F_{0}, R_{0}\right)\right)(p+v)
$$

Let $\mathcal{E}(S)=\exp (\mathcal{D}(S)) \subset F$.
We can draw the whole chunk $\mathcal{D}(S)$ of the visual field at once, by applying the inverse of the above isometry to $\mathcal{E}(S)$ (and any objects within).

Visualization

Observation 3

The collection of sequences forms a tree, Γ :

- The root of the tree is $\left(F_{0}\right)$.
- The children of (\ldots, F) are the sequences $\left(\ldots, F, R_{i}, F_{i}\right)$, where $R_{i}<F$ and $F_{i}=\mathcal{F}\left(F, R_{i}\right)$.

Visualization

Observation 3

The collection of sequences forms a tree, Γ :

- The root of the tree is $\left(F_{0}\right)$.
- The children of (\ldots, F) are the sequences $\left(\ldots, F, R_{i}, F_{i}\right)$, where $R_{i}<F$ and $F_{i}=\mathcal{F}\left(F, R_{i}\right)$.

If we can find $\mathcal{E}\left(S^{\prime}\right)$ for children S^{\prime} of S, where $\mathcal{E}(S)$ is known, then by traversing Γ we can draw the entire visual field.

Frustums

Definition

The fourth observation is that the sets $\mathcal{E}(S)$ have a particularly nice form. To state the observation, we make the following definition:

Frustums

Definition

The fourth observation is that the sets $\mathcal{E}(S)$ have a particularly nice form. To state the observation, we make the following definition:

Definition (Frustum)

A frustum is a subset $V \subset \mathbb{R}^{n}$ such that there exists

- a source point $p \in \mathbb{R}^{n}$ and
- a convex $(n-1)$-polytope $Q \not \supset p$, such that $V=\{p+k(q-p) \mid q \in Q, k \geq 0\}$.

Frustums

Definition

The fourth observation is that the sets $\mathcal{E}(S)$ have a particularly nice form. To state the observation, we make the following definition:

Definition (Frustum)

A frustum is a subset $V \subset \mathbb{R}^{n}$ such that there exists

- a source point $p \in \mathbb{R}^{n}$ and
- a convex $(n-1)$-polytope $Q \not \supset p$, such that $V=\{p+k(q-p) \mid q \in Q, k \geq 0\}$.

It will be convenient to consider \emptyset and \mathbb{R}^{n} to be a frustums (the empty frustum and full frustum, respectively).

Frustums

Examples

Figure: Examples of frustums.

Frustums

Creation

A frustum can be created from a point and a ridge.

Frustums

Transformation

A frustum can be transformed along a ridge.

Frustums

Intersection

Frustums can be intersected to get a new frustum (which may be empty).

Frustums

Intersection

A frustum V with source point p intersects a ridge R positively if $\exists v \in V \cap R$ such that $(v-p) \cdot n>0$, where n is the outward pointing normal to R.

Visualization

Observation 4

Claim: For every sequence $S=(\ldots, F)$, there is a frustum $\mathcal{V}(S)$ such that $\mathcal{E}(S)=\mathcal{V}(S) \cap F$.

Visualization

Observation 4

Claim: For every sequence $S=(\ldots, F)$, there is a frustum $\mathcal{V}(S)$ such that $\mathcal{E}(S)=\mathcal{V}(S) \cap F$.

To prove this (and also complete the algorithm to draw the visual field)

- We show this is true for the root of Г
- We compute $\mathcal{V}\left(S^{\prime}\right)$, where S^{\prime} is a child of S and $\mathcal{V}(S)$ is known.

Visualization

Observation 4

Claim: For every sequence $S=(\ldots, F)$, there is a frustum $\mathcal{V}(S)$ such that $\mathcal{E}(S)=\mathcal{V}(S) \cap F$.

To prove this (and also complete the algorithm to draw the visual field)

- We show this is true for the root of Γ
- We compute $\mathcal{V}\left(S^{\prime}\right)$, where S^{\prime} is a child of S and $\mathcal{V}(S)$ is known.

The claim is trivial for the root $\left(F_{0}\right)$ of Γ, since $\mathcal{E}\left(F_{0}\right)=\mathbb{R}^{n} \cap F_{0}$. For the inductive step, we will do an example.

Visualization

The inductive step

Data for sequence $S=(\ldots, F)$

The frustum intersects ridges α and β positively.

Visualization

The inductive step
Data for child node $S^{\prime}=(\ldots, F, \alpha, A)$

$\mathcal{V}\left(S^{\prime}\right)=($ red frustum $) \cap($ black frustum $)$

Visualization

The inductive step
Data for child node $S^{\prime \prime}=(\ldots, F, \beta, B)$

$\mathcal{V}\left(S^{\prime \prime}\right)=($ red frustum $) \cap($ black frustum $)$

Visualization

The algorithm

Let $S=(\ldots, F)$ be a sequence for which $\mathcal{V}(S)$ is known. Let $S^{\prime}=\left(\ldots, F, R, F^{\prime}\right)$ be a child of S.
The following returns $\mathcal{V}\left(S^{\prime}\right)$:

Visualization

The algorithm

Let $S=(\ldots, F)$ be a sequence for which $\mathcal{V}(S)$ is known.
Let $S^{\prime}=\left(\ldots, F, R, F^{\prime}\right)$ be a child of S.
The following returns $\mathcal{V}\left(S^{\prime}\right)$:

```
Algorithm
if( \mathcal{V}(S) intersects R positively ){
    p= Source point of \mathcal{V}(S);
    V}=\mathrm{ Frustum generated from p and R;
    return \mathcal{T}(F,R)(VR\cap\mathcal{V}(S));
}
else{ return \emptyset; }
```

